Mathematics 009B-020, Spring 2012, Examination 1

Answer Key

1. [15 points] (a) Rewrite $\log _{e}(a+b)+5 \log _{e}(a-b)-3 \log _{e} c$ as $\log _{e} A$ for a single expression involving a, b, c.
(b) Find

$$
\frac{d}{d x} 2 \arcsin \left(x^{2}\right)
$$

SOLUTION

(a) We shall suppress the base subscript from the logarithmic function to simplify the notation. Since $k \log x=\log x^{k}$ and $\log (1 / x)=-\log x$, the expression simplifies to

$$
\log (a+b)+5 \log (a-b)^{5}-\log c^{3} \quad \log \left(\frac{(a+b)(a-b)^{5}}{c^{3}}\right)
$$

(b) Set $u=x^{2}$, so that the Chain Rule implies

$$
\begin{gathered}
\frac{d}{d x} 2 \arcsin \left(x^{2}\right)=2 \frac{d}{d u} \arcsin u \cdot \frac{d u}{d x}= \\
\frac{2}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}=\frac{4 x}{\sqrt{1-x^{4}}}
\end{gathered}
$$

2. [15 points] Express $\tan (\arcsin x)$ as an algebraic function of x.

SOLUTION

If $\theta=\arcsin x$, then we want to know what $\tan \theta$ is if we know that $\sin \theta=x$. But we know that

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}=\frac{x}{\sqrt{1-x^{2}}}
$$

and since $\theta=\arcsin x$ it follows that

$$
\tan (\arcsin x)=\frac{x}{\sqrt{1-x^{2}}}
$$

3. [15 points] Evaluate the indefinite integral

$$
\int \frac{-5 \arctan x}{1+x^{2}} d x
$$

SOLUTION

If we make the change of variables $u=\arctan x$, then the integrand can be rewritten as $-5 u d u$. Therefore the indefinite integral is equal to

$$
\int-5 u d u=-\frac{5}{2} u^{2}+C=-\frac{5}{2}(\arctan x)^{2}+C
$$

4. [15 points] Evaluate the definite integral

$$
\int_{0}^{1} x e^{-x} d x
$$

SOLUTION

Use Integration by Parts as in the case of $x e^{x}$. Specifically, if $u=x$ and $d v=e^{-x} d x$, then $v=-e^{-x}$ and Integration by Parts yields the following:

$$
\int x e^{-x} d x=-x e^{-x}+\int e^{-x} d x=-x e^{-x}-e^{-x}+C
$$

Therefore the definite integral from $x=0$ to $x=1$ is equal to

$$
-x e^{-x}-\left.e^{-x}\right|_{0} ^{1}=-2 e^{-1}+1
$$

5. [20 points] Evaluate the indefinite integral

$$
\int \log _{e}(2 x) d x
$$

SOLUTION

We shall suppress the base subscript from the logarithmic function to simplify the notation. Since $\log 2 x=\log 2+\log x$, the indefinite integral is just

$$
\int \log 2 d x+\int \log x d x
$$

and using integration by parts on the second summand one checks that this is equal to

$$
(\log 2) x+x \log x-x+C
$$

since the last three terms are the indefinite integral of $\log x$.
6. [20 points] Evaluate the indefinite integral

$$
\int \frac{d x}{x^{2}-3 x+2} .
$$

SOLUTION

The first step is to find the partial fractions expansion of the denominator, which factors as $(x-2)(x-1)$:

$$
\frac{1}{x^{2}-3 x+2}=\frac{A}{x-2}+\frac{B}{x-1}
$$

The undetermined coefficients must satisfy $A+B=0$ and $-A-2 B=1$, which imply that $B=-1$ and $A=1$. Therefore we have

$$
\begin{gathered}
\int \frac{d x}{x^{2}-3 x+2}=\int \frac{d x}{x-2}-\int \frac{d x}{x-1}= \\
\log (x-2)-\log (x-1)+C
\end{gathered}
$$

which can be rewritten as

$$
\log \left(\frac{x-2}{x-1}\right)+C
$$

