Mathematics 009B-020, Spring 2012, Final Examination

Answer Key

Selected formulas and identities

(Not meant to include everything that might be needed)

Volume for the solid of revolution formed by rotating the region $a \leq x \leq b, 0 \leq y \leq$ $f(x)$ about the x-axis (Disk Method):

$$
V=\pi \int_{a}^{b} f(x)^{2} d x
$$

Volume for the solid of revolution formed by rotating the region $a \leq x \leq b, 0 \leq y \leq$ $f(x)$ about the y-axis (Shell Method):

$$
V=2 \pi \int_{a}^{b} x f(x) d x \quad(\text { assuming } a \geq 0)
$$

Base change rules for logarithms:

$$
\log _{a} x=\left(\log _{a} b\right) \cdot\left(\log _{b} x\right), \quad \log _{b} a=\frac{1}{\log _{a} b}
$$

Partial fraction expansion in a special case:

$$
\frac{x}{(a x+b)^{k+2}}=\frac{P}{(a x+b)^{k+1}}+\frac{Q}{(a x+b)^{k+2}}
$$

where P and Q are constants to be determined.
First coordinate for the centroid of the region defined by $a \leq x \leq b, g(x) \leq y \leq f(x)$:

$$
x^{*}=\bar{x}=\frac{1}{\text { Area }} \int_{a}^{b} x(f(x)-g(x)) d x
$$

Arc length formula for the curve $y=f(x)$, where $a \leq x \leq b$:

$$
L=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

Surface area for surface of revolution formed by rotating the curve $y=f(x)$ (where $a \leq x \leq b$) about the x-axis:

$$
S=2 \pi \cdot \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x
$$

Surface area for surface of revolution formed by rotating the curve $y=f(x)$ (where $a \leq x \leq b$) about the y-axis:

$$
\left.S=2 \pi \cdot \int_{a}^{b} x \sqrt{1+f^{\prime}(x)^{2}} d x \quad \text { (assuming } a \geq 0\right)
$$

1. [25 points] (a) Find the derivative of $\left(x^{2}+1\right)^{\sin x}$.
(b) Find the derivative of $\log _{x} e$.

SOLUTION

(a) Use the formula

$$
\frac{d y}{d x}=y \cdot \frac{d}{d x} \log y
$$

If y is as in the problem, then the right hand side is

$$
\left(x^{2}+1\right)^{\sin x} \cdot \frac{d}{d x} \sin x \log \left(x^{2}+1\right)
$$

and the latter equals

$$
\left(x^{2}+1\right)^{\sin x} \cdot\left(\frac{2 x \sin x}{x^{2}+1}+\cos x \log \left(x^{2}+1\right)\right)
$$

(b) By the identities for logarithms on the formula sheet we have

$$
\log _{x} e=\frac{1}{\log x}
$$

and the deriviative of the right hand side equals

$$
\frac{-1}{(\log x)^{2}} \cdot \frac{1}{x}=\frac{-\left(\log _{x} e\right)^{2}}{x}
$$

It is not necessary to express the answer in the second form.
2. [25 points] Find the area of the region bounded by the parabola $y=x^{2}$ (lower curve) and the line $y=x+2$ (upper curve).

SOLUTION

One important step is to find the limits of integration by finding the points at which the two curves meet; in other words, we need to solve the equation $x^{2}=x+2$ or equivalently $x^{2}-x-2=0$. The roots for this equation are $x=-1$ and $x=2$.

Therefore the area is given by

$$
\begin{gathered}
\int_{-1}^{2}\left((x+2)-x^{2}\right) d x=\int_{-1}^{2}\left(2+x-x^{2}\right) d x=\frac{-x^{3}}{3}+\frac{x^{2}}{2}+-\left.2 x\right|_{-1} ^{2}= \\
\left(\frac{-8}{3}-\frac{1}{3}\right)+\left(\frac{4}{2}-\frac{1}{2}\right)+(4-(-2))= \\
-3+\frac{3}{2}+6=\frac{9}{2} .
\end{gathered}
$$

3. [25 points] A bucket of cement weighing 50 pounds is being lifted into the air with a 40 foot rope having a uniform density of 0.5 pounds per feet. Compute the work (or energy usage) required to lift the bucket from the ground to a height of 40 feet above the ground.

SOLUTION

The key is to find the force needed to lift everything when the bucket is h feet above the ground. This is 50 pounds plus the weight of the portion of the rope which is hanging down, and since mass $=$ density \times length the rope weight for height h is equal to

$$
0.5 \times(40-h)
$$

Therefore the work done in lifting the bucket is

$$
\begin{gathered}
\int_{0}^{40} 50+\left(\frac{40-h}{2}\right) d h=\int_{0}^{40} 70-\left(\frac{h}{2}\right) d h= \\
70 h-\left.\frac{h^{2}}{4}\right|_{0} ^{40}=2800-400=2400 \text { foot }- \text { pounds }
\end{gathered}
$$

4. [30 points] Evaluate the following antiderivatives (= indefinite integrals).
(a)

$$
\int \sqrt{e^{3 x}+e^{2 x}} d x
$$

[Hint: Factor the expression inside the radical sign.]
(b)

$$
\int \frac{x d x}{(x+4)^{3}}
$$

SOLUTION

(a) Following the hint, note that the integrand equals $e^{x} \sqrt{e^{x}+1}$, so the integral is

$$
\int \sqrt{e^{x}+1} e^{x} d x
$$

and if we let $u=e^{x}+1$ this becomes

$$
\int \sqrt{u} d u=\frac{2}{3} u^{3 / 2}+C=\frac{2}{3}\left(e^{x}+1\right)^{3 / 2}+C
$$

(b) We have the partial fraction expansion

$$
\frac{x}{(x+4)^{3}}=\frac{1}{(x+4)^{2}}-\frac{4}{(x+4)^{3}}
$$

so that

$$
\int \frac{x d x}{(x+4)^{3}}=\int \frac{d x}{(x+4)^{2}}-\int \frac{4 d x}{(x+4)^{3}}
$$

and the latter is just

$$
\frac{-1}{(x+4)}+\frac{-1}{2(x+4)^{2}}+C
$$

5. [30 points] (a) Evaluate the definite integral

$$
\int_{0}^{\pi / 2} \cos x \sin 2 x d x
$$

(b) Evaluate the improper integral

$$
\int_{4}^{\infty} \frac{x d x}{\left(x^{2}+1\right)^{2}}
$$

SOLUTION

(a) Since

$$
\sin \alpha \cos \beta=\frac{1}{2}(\sin (\alpha+\beta)+\sin (\alpha-\beta))
$$

it follows that the integrand equals $\frac{1}{2}(\sin 3 x+\sin x)$, so that the integral is

$$
\begin{gathered}
\frac{1}{2} \int_{0}^{\pi / 2}(\sin 3 x+\sin x) d x=\frac{-\cos 3 x}{6}+\left.\frac{-\cos x}{2}\right|_{0} ^{\pi / 2}= \\
0-\left(\frac{-1}{6}+\frac{-1}{2}\right)=\frac{2}{3}
\end{gathered}
$$

(b) The improper integral equals the limit of the ordinary definite integral from 4 to b as $b \rightarrow \infty$. To compute

$$
\int_{4}^{b} \frac{x d x}{\left(x^{2}+1\right)^{2}}
$$

make the change of variables $u=x^{2}+1$, so that $x d x=\frac{1}{2} d u$ and this integral equals

$$
\begin{gathered}
\frac{1}{2} \cdot \int_{17}^{b^{2}+1} \frac{d u}{u^{2}}=\left.\frac{1}{2} \cdot \frac{-1}{u}\right|_{17} ^{b^{2}+1}= \\
\frac{1}{2} \cdot\left(\frac{1}{17}-\frac{1}{b^{2}+1}\right)
\end{gathered}
$$

If we take the limit of this as $b \rightarrow \infty$, then the second term disappears and we are left with a final answer of $1 / 34$.
6. [20 points] If D is the region bounded by the graphs of $y=x^{2}$ and $y=\sqrt{x}$, then D is symmetric with respect to the diagonal line $y=x$ and hence the coordinates $\left(x^{*}, y^{*}\right)$ of its centroid are equal. Find x^{*}; you may use the fact that the area of the region D is equal to $1 / 3$ without proving it.

SOLUTION

The two curves meet when $x=0,1$. Therefore by the formula we know that

$$
x^{*}=\frac{1}{\text { area }} \cdot \int_{0}^{1} x \cdot\left(\sqrt{x}-x^{2}\right) d x
$$

and since the area is $1 / 3$ this is equal to

$$
\begin{aligned}
\frac{1}{1 / 3} \cdot \int_{0}^{1}\left(x^{3 / 2}-x^{3}\right) d x & =3 \cdot\left(\frac{2}{5} x^{5 / 2}-\left.\frac{1}{4} x^{4}\right|_{0} ^{1}\right)= \\
3 \cdot\left(\frac{2}{5}-\frac{1}{4}\right) & =3 \cdot \frac{3}{20}=\frac{9}{20} .
\end{aligned}
$$

7. [20 points] Find (but do not evaluate) an explicit definite integral which gives the arc length for the piece of the hyperbola $y=\sqrt{x^{2}-1}$ where $2 \leq x \leq 3$.

SOLUTION

The formula says that the arc length is the integral of $\sqrt{1+\left(y^{\prime}\right)^{2}}$ where $y=\sqrt{x^{2}-1}$. The latter implies that

$$
y^{\prime}=\frac{x}{\sqrt{x^{2}-1}} \quad \text { so that } \quad\left(y^{\prime}\right)^{2}=\frac{x^{2}}{x^{2}-1}
$$

and hence

$$
1+\left(y^{\prime}\right)^{2}=\frac{2 x^{2}-1}{x^{2}-1}
$$

Therefore the arc length formula implies that the arc length equals

$$
\int_{2}^{3} \sqrt{\frac{2 x^{2}-1}{x^{2}-1}} d x
$$

8. [25 points] Find the surface area of the spherical surface of revolution obtained by rotating the curve $y=\sqrt{1-x^{2}}$ about the y-axis, where $0 \leq x \leq \frac{1}{2}$.

SOLUTION

The surface area formula for this example is given by

$$
2 \pi \cdot \int_{a}^{b} x \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

where y is as above. In this case we have

$$
y^{\prime}=\frac{-x}{\sqrt{1-x^{2}}}, \quad \text { so that } \quad\left(y^{\prime}\right)^{2}=\frac{x^{2}}{1-x^{2}}
$$

and hence

$$
1+\left(y^{\prime}\right)^{2}=\frac{1}{1-x^{2}}
$$

Therefore the surface area formula implies that the surface area equals

$$
2 \pi \cdot \int_{0}^{1 / 2} \frac{x d x}{\sqrt{1-x^{2}}}
$$

and if we let $u=1-x^{2}$ (so that $x d x=-\frac{1}{2} d u$) the area formula becomes

$$
\begin{gathered}
2 \pi \int_{1}^{3 / 4} \frac{-d u}{2 \sqrt{u}}=2 \pi \int_{3 / 4}^{1} \frac{d u}{2 \sqrt{u}}=\left.2 \pi \sqrt{u}\right|_{3 / 4} ^{1}=2 \pi\left(1-\frac{\sqrt{3}}{2}\right)= \\
\pi(2-\sqrt{3}) .
\end{gathered}
$$

