Some items from the lectures on Colley, Section 2.6

RESTRICTION OF COVERAGE. The material on the general case of the Inverse Function Theorem will NOT be covered in this course. However, the Implicit Function Theorem for scalar valued functions HAS BEEN COVERED. This goes up to, but not including, the last paragraph on page 164 of the text (which begins with "As just mentioned ...").

Example. Suppose that y is given implicitly as a function of x by the equation $x^{3}+y^{3}-9=0$ and we know that $y(1)=2$. Find $y^{\prime}(1)$ without solving for y^{\prime} explicitly.

In this case the defining equation $F(x, y)=x^{3}+y^{3}-9$, and the chain rule formula for implicit differentiation implies that

$$
y^{\prime}=-\frac{F_{x}}{F_{y}}
$$

where F_{w} is the partial derivative with respect to $w=x, y$. In order to use this formula, we need to know that $F_{y}(1,2)$ is nonzero, but since $\nabla F=\left(3 x^{2}, 3 y^{2}\right)$ this condition is clearly satisfied. Now the value of the gradient $\nabla F(1,2)=(3,12)$, and if we now substitute these values for F_{x} and F_{y} we find that $y^{\prime}=-\frac{1}{4}$.

THIRD ORDER PARTIAL DERIVATIVES.

Answers to selected exercises from Colley, Section 2.6

5. $\quad \nabla f(x, y)=\left(e^{x}-2 x y,-x^{2}\right)$, so $\nabla f(1,2)=(e-4,-1)$, and

$$
D_{\mathbf{u}} f(\mathbf{a})=(e-4,-1) \cdot \frac{1}{\sqrt{5}}(2,1)=\frac{1}{\sqrt{5}}(2 e-9) .
$$

6. $\quad \nabla f(x, y, z)=(y z, x z, x y)$, so $\nabla f(-1,0,2)=(0,-2,0)$ and

$$
D_{\mathbf{u}} f(\mathbf{a})=(0,-2,0) \cdot \frac{1}{\sqrt{5}}(-1,0,2)=0
$$

7. $\nabla f(x, y, z)=-e^{x^{+} C y^{2}+z^{2}}(2 x, 2 y, 2 z)$, so $\nabla f(1,2,3)=-e^{-14}(2,4,6)$ and

$$
D_{\mathbf{u}} f(\mathbf{a})=-e^{-14}(2,4,6) \cdot \frac{1}{\sqrt{3}}(1,1,1)=-4 \sqrt{3} e^{-14}
$$

11. The gradient direction for the function h is $\nabla h=\left(-6 x y^{2},-6 x^{2} y\right)$. The most rapid decrease occurs in the direction $\nabla h(1,-2)=(-24,12)$, and the direction in which the depth remains constant is given by a unit vector which is a multiple of $(1,2)$ (to get a vector of unit length, divide by $\sqrt{5}$).
12. The gradient is $\nabla f(3,7)=(3,-2)$.
(a) To warm up we head in the direction of the gradient; this is the unit vector $(3,-2) / \sqrt{13}$.
(b) To cool off we head in the opposite direction; this is the unit vector $(-3,2) / \sqrt{13}$.
(c) To maintain temperature we head in a direction perpeudicular to the gradient; namely, $(2,3) / \sqrt{13}$.
13. $\nabla f(x, y, z)=\left(-z e^{y} \sin x, z e^{y} \cos x, e^{y} \cos x\right)$ and $\nabla f(\pi, 0,-1)=(0,1,-1)$. So the equation of the tangent plane is $0=(0,1,-1) \cdot(x-\pi, y, z+1)$ or $y-z=1$.
14. $\nabla f(x, y, z)=\left(2 y^{2}+y z, 4 x y+x z, x y-4 z\right)$ and $\nabla f(2,-3,3)=(9,-18,-18)$. Therefore the equation of the tangent plane is $0=(9,-18,-18) \cdot(x-2, y+3, z-3)$ or equivalently $x-2 y-2 z=2$.
15. We shall only work this problem using the gradient formula for the normal to the surface. This gradient is given by $\nabla f(x, y, z)=(2 x+5 z,-4 y, 5 x)$, so $\nabla f(-1,0,-6 / 5)=(-8,0,-5$, and therefore the equation for the tangent plane is $0=(-8,0,-5) \cdot(x+1, y, z+6 / 5)$, or equivalently $-8 x-5 z=14$.
16. The gradient of f at $\left(x_{0}, y_{0}, z_{0}\right)$ is $\left(3 x_{0}^{2},-4 y_{0}, 2 z_{0}\right)$. For this to be perpendicular to the given line, $\left(3 x_{0}^{2},-4 y_{0}, 2 z_{0}\right)$ must equal $k(3,2,-\sqrt{2})$ for some nonzero constant k. This means that $x_{0}^{2}=-2 y_{0}$ and $z_{0}=-(\sqrt{2} / 2) x_{0}^{2}$. Substituting this back into the equation of the surface, we get that $x_{0}^{3}-2 x_{0}^{4} / 4+x_{0}^{4} / 2=27$ or $x_{0}=3$. Therefore the point in question is ($3,-9 / 2,-9 \sqrt{2} / 2$).
17. The tangent plane to the surface at a point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
0=18 x_{0}\left(x-x_{0}\right)-90 y_{0}\left(y-y_{0}\right)+10 z_{0}\left(z-z_{0}\right) .
$$

For this to be parallel (or equal) to the plane with equation $x+5 y-2 z=7$, the gradient vector $\left(18 x_{0},-90 y_{0}, 10 z_{0}\right)$ must be equal to $k(1,5,-2)$ for some nonzero constant k. This means that $y_{0}=-x_{0}$ and $z_{0}=(-18 / 5) x_{0}$. If we substitute these back into the equation of the hyperboloid with equation $9 x^{2}-45 y^{2}+5 z^{2}=45$ we see that

$$
45=9 x_{0}^{2}-45 x_{0}^{2}+5\left(18^{2} / 5^{2}\right) x_{0}^{2}
$$

and if we solve for x_{0} we find that $x_{0}= \pm 5 / 4$. This means that the points are ($5 / 4,-5 / 4,-9 / 2$) and ($-5 / 4,5 / 4,9 / 2$).
26.(a) S is the level set at height 0 for $f(x, y, z)=x^{2}+4 y^{2}-z^{2}$, and $\nabla f(3,-2,-5)=$ $(6,-16,10)$. Thus the equation of the tangent plane is given by

$$
6(x-3)-16(y+2)+10(z+5)=0
$$

or equivalently $3 x-8 y+5 z=0$.
(b) The gradient of f at $(0,0,0)$ is $(0,0,0)$, so the gradient cannot be used as a normal vector. For our purposes, this will be enough to say that the surface does not have a reasonable tangent plane at the origin.
27.(a) We know that $\nabla f(x, y, z)=\left(3 x^{2}-2 x y^{2},-2 x^{2} y, 2 z\right)$, so that $\nabla f(2,-3 / 2,1)-$ $(3,12,2)$. Thus the equation of the tangent plane is

$$
3(x-2)+12(y+3 / 2)+(z-1)=0
$$

or equivalently $3 x+12 y+2 z+10=0$.
(b) $\nabla f(0,0,0)=(0,0,0)$, so the gradient cannot be used as a normal vector. For our purposes, this will be enough to say that the surface does not have a reasonable tangent plane at the origin.
31. $\nabla f(5,-4)=(10,8)$, so the equations of the normal line are $x(t)=10 t+5$ and $y(t)=8 t-4$ or equivalently $8 x-10 y=80$.
32. $\nabla f(-1, \sqrt{2})=(5,2 \sqrt{2})$, so the equations of the normal line are $x(t)=5 t-1$ and $y(t)=2 \sqrt{2} t-\sqrt{2}$ or equivalently $2 \sqrt{2} x-5 y=-7 \sqrt{2}$.

