Some items from the lectures on Colley, Section 3.1

RESTRICTION OF COVERAGE. The material on Kepler's Laws will NOT be covered in this course.

Answers to selected exercises from Colley, Section 3.1

8. The velocity is given by $\mathbf{v}(t)=\mathbf{x}^{\prime}(t)=(-5 \sin t, 3 \cos t)$, the speed by $\left|\mathbf{v}^{\prime}\right|(t)=$ $(-5 \sin t)^{2}+(3 \cos t)^{2}=\sqrt{9+16 \sin ^{2} t}$, and the acceleration by $\mathbf{a}(t)=\mathbf{x}^{\prime \prime}(t)=(-5 \cos t,-3 \sin t)=$ $-\mathbf{x}(t)$.
9. The velocity is given by $\mathbf{v}(t)=\mathbf{x}^{\prime}(t)=\left(e^{t}, 2 e^{2 t}, 2 e^{t}\right)$, the speed by

$$
\left|\mathbf{v}^{\prime}\right|(t)=\sqrt{5 e^{2 t}+4 e^{4 t}}=e^{t} \sqrt{5+4 e^{2 t}}
$$

and the acceleration by $\mathbf{a}(t)=\mathbf{x}^{\prime \prime}(t)=\left(e^{t}, 4 e^{2 t}, 2 e^{t}\right)$.
16. We have $\mathbf{x}(\pi / 3)=(2,-3 \sqrt{3} / 2,5 \pi / 3)$ and $\mathbf{x}^{\prime}(t)=(-4 \sin t,-3 \cos t, 5)$ so that $\mathbf{x}^{\prime}(\pi / 3)=$ $(-2 \sqrt{3},-3 / 2,5)$. Hence the equation of the tangent line at $t=\pi / 3$ is $\mathbf{L}(t)=(2,-3 \sqrt{3} / 2,5 \pi / 3)+$ $(-2 \sqrt{3},-3 / 2,5) \cdot(t-\pi / 3)$.
18. We have $\mathbf{x}(1)=(\cos e, 2,1)$ and $\mathbf{x}^{\prime}(t)=\left(-e^{t} \sin e^{t},-2 t, 1\right.$ so that $\mathbf{x}^{\prime}(-e \sin e,-2,1)$. Hence the equation of the tangent line at $t=1$ is $\mathbf{L}(t)=(\cos e, 2,1)+(-e \sin e,-2,1)(t-1)=$ $(\cos e+e \sin e-(e \sin e) t, 4-2 t, t)$.
26.(a) In order to determine the time(s) at which the balls meet, we mmust set $\mathbf{x}(t)=\mathbf{y}(t)$ and solve for t :

$$
\left(t^{2}-2, \frac{1}{2} t^{2}-1\right)=\left(t, 5-t^{2}\right)
$$

Comparing first coordinates, we have $t^{2}-2=t$, which is equivalent to $t^{2}-t-2=0$, which in turn implies that $t=-1,2$. This means that the first coordinates for the positions of the balls are the same at these two values; we need to check which, if any, of these two values yield the same second coordinates. Since $\mathbf{x}(-1)=(-1,-1)$ and $\mathbf{y}(-1)=(-1,4)$, the value $t=-1$ does not yield a collision point. However, we do have $\mathbf{x}(2)=(2,1)=\mathbf{y}(2)$, so that the balls collide when $t=2$ and their common position is $(2,1)$.
(b) We have $\mathbf{x}^{\prime}(2)=(4,2)$ and $\mathbf{y}^{\prime}(2)=(1,-4)$. The angle between the paths is the angle between these tangent vectors, which is

$$
\begin{gathered}
\operatorname{Arc} \cos \frac{\mathbf{x}^{\prime}(2) \cdot \mathbf{y}^{\prime}(2)}{\left|\mathrm{x}^{\prime}(2)\right| \cdot\left|\mathbf{y}^{\prime}(2)\right|}= \\
\operatorname{Arc} \cos \frac{-4}{\sqrt{20} \sqrt{17}}=\operatorname{Arccos} \frac{-2}{\sqrt{5} \sqrt{17}}
\end{gathered}
$$

27. This verification is fairly straightforward:

$$
\begin{aligned}
& \frac{d}{d t}(\mathbf{x} \cdot \mathbf{y})=\frac{d}{d t} x_{1} y_{1}+\cdots=\left(\frac{d x_{1}}{d t} \cdot y_{1}+x_{1} \cdot \frac{d y_{1}}{d t}\right)= \\
& \left(\frac{d x_{1}}{d t} \cdot y_{1}+\cdots\right)+\left(x_{1} \cdot \frac{d y_{1}}{d t}+\cdots\right)=\left(\mathbf{x}^{\prime} \cdot \mathbf{y}\right)+\left(\mathbf{x} \cdot \mathbf{y}^{\prime}\right)
\end{aligned}
$$

30.(a) We need to show that $\left|\mathrm{x}^{\prime}(t)\right|^{2}=1$ for all t. However, the latter is equal to $\cos ^{2} t+$ $\cos ^{2} t \sin ^{2} t+\sin ^{4} t$ and the latter simplifies to 1 by two applications of the identity $\sin ^{2}+\cos ^{2}=1$.
(b) The exercise suggests that one calculate the velocity vector and show that its dot product with the position vector is zero. But we have $\mathbf{v}(t)=\left(-\sin t,-\sin ^{2} t+\cos ^{2} t, 2 \sin t \cos t\right)$, and direct computation shows that $\mathbf{v} \cdot \mathbf{x}=0$.
(c) If $\mathbf{x}(t)$ is a path on the unit sphere, then $|\mathbf{x}(t)|^{2}=\mathbf{x}(t) \cdot \mathbf{x}(t)=1$ for all t, and hence by Proposition 1.7 the position vector is perpendicular to its velocity vector. [Note: The proof of this result appears in the discussion of Kepler's Laws, but its derivation only requires Proposition 1.4, which is verified in Exercise 27.]

