Some items from the lectures on Colley, Section 3.4

INTERPRETING ∇-OPERATIONS ON VECTOR FIELDS. Information on these topics can be found in the files gradient.pdf and weblinks3.pdf; as usual, these are in the course directory.

Answers to selected exercises from Colley, Section 3.4

1. The divergence is given by

$$
\left.\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x} x^{2}+\frac{\partial}{\partial y} y^{2}\right)=2 x+2 y
$$

2. The divergence is given by

$$
\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x} y^{2}+\frac{\partial}{\partial y} x^{2}=0+0=0
$$

3. The divergence is given by

$$
\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x}(x+y)+\frac{\partial}{\partial y}(y+z)+\frac{\partial}{\partial z}(z+x)=1+1+1=3 .
$$

4. The divergence is given by

$$
\begin{gathered}
\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x}\left(z \cos \left(e^{y^{2}}\right)\right)+\frac{\partial}{\partial y}\left(x \sqrt{z^{2}+1}\right)+\frac{\partial}{\partial z}\left(e^{2 y} \sin 3 x\right)= \\
0+0+0=0
\end{gathered}
$$

6. The divergence is given by

$$
\begin{aligned}
& \nabla \cdot \mathbf{F}= \frac{\partial}{\partial x_{1}} x_{1}+\frac{\partial}{\partial x_{2}} 2 x_{2}+\frac{\partial}{\partial x_{3}} 3 x_{3} \cdots= \\
& 1+0+0+\cdots=1
\end{aligned}
$$

7. We shall use the symbols D_{x}, D_{y} and D_{z} to denote partial differentiation with respect to x, y and z in order to save space. The curl of the vector field is given by

$$
\begin{gathered}
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
x^{2} & -x e^{y} & 2 x y z
\end{array}\right|= \\
\left(D_{y}(2 x y z)-D_{z}\left(x e^{y}\right), D_{z}\left(x^{2}\right)-D_{x}(2 x y z), D_{x}\left(-x e^{y}\right)-D_{y}\left(x^{2}\right)\right)=\left(2 x z,-2 y z,-e^{y}\right) .
\end{gathered}
$$

8*. ($=\mathbf{8}$ modified) The curl of the modified vector field $\mathbf{F}(x, y, z)=(z, x, y)$ is given by

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
z & x & y
\end{array}\right|=
$$

$$
\left(D_{y} y-D_{z} y, D_{z} z-D_{x} y, D_{x} x-D_{y} z\right)=(1,1,1) .
$$

9. The curl of the vector field is given by

$$
\begin{gathered}
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
x+y z & y+x z & z+x y
\end{array}\right|= \\
(x-x, y-y, z-z)=(0,0,0) .
\end{gathered}
$$

10. The curl of the vector field is given by

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
(\cos y z-x) & (\cos x z-y) & (\cos x y-z)
\end{array}\right|=
$$

$$
\left(D_{y}(\cos x y-z)-D_{z}(\cos x z-y), D_{z}(\cos y z-x)-D_{x}(\cos x y-z), D_{x}(\cos x z-y)-D_{y}(\cos y z-x)\right)=
$$

$$
(x(\sin x z-\sin x y), y(\sin x y-\sin y z), z(\sin y z-\sin x z)) .
$$

17. In order to minimize confusion we shall use ρ to denote $|\mathbf{r}|=r$.

By construction we have $\rho=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots}$ and therefore we have that

$$
\begin{gathered}
\frac{\partial \rho^{n}}{\partial x_{i}}=\frac{\partial}{\partial x_{i}}\left(x_{1}^{2}+x_{2}^{2}+\cdots\right)^{n / 2}= \\
\frac{n}{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots\right)^{(n / 2)-1} \cdot 2 x_{i}
\end{gathered}
$$

and since $(n / 2)-1=\frac{1}{2}(n-2)$ we may rewrite the right hand side as

$$
n \cdot\left(\rho^{2}\right)^{(n-2) / 2} \cdot x_{i}=n \cdot \rho^{n-2} \cdot x_{i} .
$$

Since this is the $i^{\text {th }}$ coordinate of the gradient and x_{i} is the $i^{\text {th }}$ coordinate of \mathbf{r}, it follows that $\nabla \rho^{n}=n \rho^{n-2} \mathbf{r}$.
18. In this case we may apply the preceding exercise to obtain

$$
\nabla \rho=\frac{1}{\rho} \nabla \rho=\frac{1}{\rho} \rho^{-1} \mathbf{r}=\frac{\mathbf{r}}{\rho^{2}} .
$$

19. We shall use the identity

$$
\nabla \cdot(f \mathbf{F})=f \nabla \cdot \mathbf{F}+(\nabla f) \cdot \mathbf{F}
$$

from Exercise 23 (see below) together with the conclusion of Exercise 17. Since the divergence of \mathbf{r} is equal to 3 , it follows that

$$
\nabla \cdot \rho^{n} \mathbf{r}=\rho^{n} \nabla \cdot \mathbf{r}+(\nabla \rho) \cdot \mathbf{r}=\rho^{n} \cdot 3+\left(n \rho^{n-2}\right) \mathbf{r} \cdot \mathbf{r}
$$

and since $\rho^{2}=\mathbf{r} \cdot \mathbf{r}$ it follows that the right hand side is $3 \rho^{n}+n \rho^{n-2} \rho^{2}=(n+3) \rho^{n}$.
20. By Theorem 4.3 on page 218, we know that $\nabla \times(\nabla f)=\mathbf{0}$ for all functions f with continuous partial derivatives. Thus it is enough to show that $\rho^{n} \mathbf{r}$ is the gradient of some function. The easiest way to do this is to use Exercise 18; if we set $m=n+2$ in that result we see that $(n+2) \rho^{n} \mathbf{r}=\nabla \rho^{n+2}$, and the latter means that

$$
\rho^{n} \mathbf{r}=\nabla \frac{\rho^{n+2}}{n+2}
$$

Therefore we must have $\nabla \times\left(\rho^{n} \mathbf{r}\right)=0$.
23. Let \mathbf{F}_{i} be the $i^{\text {th }}$ coordinate of \mathbf{F}. Then

$$
\begin{gathered}
\nabla \cdot(f \cdot \mathbf{F})=\sum_{i=1}^{n} \frac{\partial f \cdot F_{i}}{\partial x_{i}}= \\
\sum_{i=1}^{n} f \frac{\partial F_{i}}{\partial x_{i}}+\frac{\partial f}{\partial x_{i}} F_{i}
\end{gathered}
$$

and by the definitions the latter is equal to

$$
f \nabla \cdot \mathbf{F}+(\nabla f) \cdot \mathbf{F} .
$$

24. Students are not responsible for knowing how to work this problem..
25. (a) If we think of ∇ formally as (D_{x}, D_{y}, D_{z}), then formally $\nabla \cdot \nabla$ looks like $D_{x}^{2}+D_{y}^{2}+D_{z}^{2}$.
(b) If D represents partial differentiation with respect to one of x, y, z, then repeated application of the Leibniz rule implies that

$$
D^{2}(f g)=\left(D^{2} f\right) g+2(D f)(D g)+f\left(D^{2} g\right) .
$$

if we sum the appropriate terms for $D=D_{x}, D_{y}, D_{z}$, we see that the right hand side is

$$
\left(D_{x}^{2} f+D_{y}^{2} f+D_{z}^{2} f\right) g+2\left(D_{x} f D_{x} g+D_{y} f D_{y} g+D_{z} f D_{z} g\right)+f\left(D_{x}^{2} g+D_{y}^{2} g+D_{z}^{2} g\right)
$$

which is a rewriting of the expression appearing in the statement of the exercise.
(c) We shall use the preceding together with Exercise 23. For any two functions u and v we have

$$
\nabla \cdot(u \nabla v)=u \nabla^{2} v+\nabla u \cdot \nabla v
$$

and therefore we have

$$
\begin{gathered}
\nabla \cdot(f \nabla g)-\nabla \cdot(g \nabla f)=f \nabla^{2} g+\nabla f \cdot \nabla g-\left(g \nabla^{2} g+\nabla g \cdot \nabla f\right)= \\
f \nabla^{2} g+\nabla f \cdot \nabla g-g \nabla^{2} f-\nabla g \cdot \nabla f .
\end{gathered}
$$

The second and fourth terms cancel each other, and what remains is just $f \nabla^{2} g-g \nabla^{2} f$.

