Answers to selected exercises from Colley, Section 3.5

1. TRUE. The condition on distance amounts to saying that $\mathbf{x} \cdot \mathbf{x}=C$ (constant), and if we differentiate both sides we get $0=(\mathbf{x} \cdot \mathbf{x})^{\prime}=2 \mathbf{x} \cdot \mathbf{x}^{\prime}$, which is equivalent to saying that $\mathbf{x} \cdot \mathbf{x}^{\prime}=0$.
2. FALSE. If $\mathbf{x}(t)=(\cos t \cdot \sin t)$, then $\left|\mathbf{x}^{\prime}\right|=1$ but $\mathbf{x}^{\prime}(t)=(-\sin t, \cos t)$ is definitely not constant.
3. TRUE. Use Exercise 3 from Section 3.6 and the fact that $\left|\mathbf{x}^{\prime}\right|=1$ for the arc length parametrization.
4. TRUE. We show this using Exercise 25 from Section 3.4. The latter states that

$$
\nabla \cdot(\mathbf{F} \times \mathbf{G})=(\nabla \times \mathbf{F}) \cdot \mathbf{G}-\mathbf{F} \cdot(\nabla \times \mathbf{G})
$$

(CAUTION: note the negative sign in this formula!). We want to determine whether this is zero if $\mathbf{F}=\nabla f$ and $\mathbf{G}=\nabla g$ for some functions f and g with continuous second derivatives. In this case the right hand side of the displayed equation becomes

$$
(\nabla \times \nabla f) \cdot \nabla g-\nabla f \cdot(\nabla \times \nabla g)
$$

and since $\nabla \times(\nabla h)=\mathbf{0}$ for all functions h with the given properties it follows the displayed expression reduces to $\mathbf{0} \cdot \nabla g-\nabla f \cdot \mathbf{0}=0$.

