Some items from the lectures on Colley, Section 4.1

TAYLOR POLYNOMIAL APPROXIMATIONS. Students who have taken a course on
infinite series have already seen Taylor’s formula for functions of one variable, but since such a
course is not a prerequisite for this one we shall summarize the main point.

The Mean Value Theorem for single variable functions states that, under suitable conditions,
we have

fla+h) = fla) + f/(Y)-h

where Y is between a and a 4+ h. There are several versions of Taylor’s Formula for approximating
functions by polynomials of degree n, and the following one is an analog of the Mean Value Theorem:

Taylor’s Formula. If f has continuous derivatives of order < n + 1 on some open interval
a—r<a<a-+r, then for all h such that a + h lies in this interval we have

n f(k)(a) . hE f("‘H)(Y) . pntl

flath) = 7l G

k=0

where f(¥) denotes the k' derivative of f with f(©) = f, o denotes the sum of all terms from k = 0
ton, and Y lies between a and a + h.

The summation part of the right hand side is called the n'* degree Taylor polynomial for f at
a, which will sometimes be written T}, f(z;a) or T, f(x) if a is understood, and the single summand
at the end is called the remainder term and written R, f(z;a).

The derivation of this formula can be done in several ways (for example, in Widder’s book
cited in the text bibliography it is done using integration by parts), but we shall simply assume
this formula as known.

Example. Suppose we take f(z) = sinx with a = 0. The the third degree Taylor polynomial
approximation is given by x — %3:3. In order to determine the accuracy of this approximiation, we
shall use the full version of the formula with the remainder term

) 3:.3 N Y5
inx = - — —
S N T
where Y is between 0 and z. For the sake of definiteness, we shall take x = 7/4; in order to estimate
the accuracy of the third degree approximation, we need to get an upper estimate on the size of

the fifth degree term. Since
s 4

4 5

it follows that Y is between 0 and %, so a crude upper estimate for the fifth degree term can be
obtained by replacing Y with %. If we do this we see that the maximum error in the approximation
is no greater than
45
55 .120
and this is well within 1 per cent of the true value, which is %\/5 ~ 0.707....

EXTENSION TO FUNCTIONS OF SEVERAL VARIABLES. In this course we shall
only need the first and second degree Taylor polynomial approximations; a discussion of higher
order Taylor polynomials appears on pages 241-243 of the course text. Also, since we can get by

= 0.00273066 ...
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without discussing the form of the remainder term explicitly, we shall pass on trying to describe it
here. Further details are also available in Section V.4 (pp. 84-90) of the following online lecture
notes for a second linear algebra course:

http://math.ucr.edu/~res/math132/linalgnotes.pdf
There is a clickable version of this link in the file weblinks4.pdf in the course directory.

The first degree Taylor polynomial approximation to a well-behaved function f(z1,x2, -+ ) is
given by the previous linear approximation formula:

Tiftath) = f(a) + Vi(a)-h = fla) + 3 (af <a>>-hi

Ox;
i=1 v

The second degree Taylor polynomial is the sum of this with an appropriate second degree term;
here is the explicit formula:

> (o) ik

i,j=1

N =

Tof(a+h) = fa) + 3. <§£(a)> hi +

i=1
If n = 2 and the variables are given by x and y and h = (hq, hs), then we may rewrite the second

degree part in the form
1 /0%f o0 f o0 f
=5 hi + 2 hih — h3
2 <8x2 P dzoy 7 * 0y? 2)

and in three variables x,y,z one can rewrite this similarly using the convention that f,, is the
second partial derivative with respect to v and v:

(fxxh% + 2fxyh1h2 + fyyh% + Qfxzhlh?) + 2fyzh2h3 + fzzhg)

N =

In both of these displayed formulas, the second partial derivatives are evaluated at the reference
point a.

Answers to selected exercises from Colley, Section 4.1

2. In this problem, a = 0 and k = 3, and we have the following;:

f@) = log,(1+2) — f(0) = 0

fla) = = = f0) =1
@ = qrgE = 0 = o=
f”l(l‘) _ (1+2$)3 — f///(o) — (_1i -2 9

Substituting these into the Taylor polynomial formula, we find that the third degree approximation
is given by
1, 2 4 2
Tsf(zr) = O+x—§az —I—gx =T - 5



4. In this problem, a = 1 and k£ = 3, and we have the following:

f@) = VB = 1) =1

o) = 5o 0P = ) =
frla) = Zo P — ) =
f///(x) — §x7(5/2) — f///(l) _ g

Substituting these into the Taylor polynomial formula, we find that the third degree approximation
is given by
Tif@) = 1+ 51 — c@-1? + o (@1
sf(x) = 5 (@ g (@ 6 (@ .

8.  We shall begin by computing all the first and second partial derivatives of f at (0,0):

fen) = s — f00 = 1
felz,y) = ﬁ — f,(0,0) = 0
fulz,y) = ﬁ —  £,(0,0) = 0
e = EIHE oo -
) = LS = 00 = -2

8zy

fay(2,9) — fzy(0,0) = 0

(1422 +42)3
Substituting these into the Taylor polynomial formula, we find that the second degree approxima-
tion is given by

(fo(O,O):L'Q + 2fry(030)$y =+ fyy(0,0)yz) = 1_($2+3/2)-

DO =

This corresponds to the answer one would get by substituting 2 4+ y2 into the geometric series for
1/(1 = 2).

10.  Once again we shall begin by computing all the first and second partial derivatives of
f at (0,0):

flzy) = & = f(0,0) = 1
folz,y) = 22T = f,(0,0) = 0
fo(z,y) = W = f£,(0,00 = 0
fez(z,y) = 4e*TV — ¥ty — 9



f(zy) = 7 = [,(0,0) = -2
fﬂcy (l'a y) = 262I+y — fxy((), 0) =0
Substituting these into the Taylor polynomial formula, we find that the second degree approxima-

tion is given by

(f22(0,0)2” + 2f,,(0,0)zy + f,,(0,0)y°) =

DO =

TQf(:U) =1+ (fr(0,0)ZL'—ny(0,0)y) +

1
1+2x+y+§(4x2+2(2)aﬁy+y2) =
2

1+2:n—|—y—|—2x2—|—2my—|—%.

12.  Once again we shall begin by computing the first and second partial derivatives of f at
(0,0,0):

fla,y,2) = Hm?inHQ — £(0,0,0) = 1
—2x

folzyy,2) = AT 212t ) = f.(0,0,0) = 0

fy(z,y,2) = (RS = f.(0,0,0) = 0

Fulz,y,2) = 2z —  £,(0,0,0) = 0

(1+22+y? +22)?
622 — 2y? — 222 — 2
fm(ac,y,z) = (1+$2+y2+z2)3 = fxx(ovoao) = -2

6y% — 202 — 222 — 2

foy(®,y,2) = (14 22+ y2 + 22)3 - fyy(0,0,0) = -2
622 — 222 — 2y% — 2
fzz(w,,%z) - (1+x2+y2+22)3 = fzz(0,0,0) = —2
8xy
fxy(x,y) - (1+x2+y2+22)3 - f;cy(0,0,0) =0
Syz
2\, = =  f:,(0,0,0) = 0
fy (.CC y) (1+$2+y2+z2)3 fy( )
8xz
f:cz(w7y) = (1—{—3:2—1—@/2—1—,22)3 = fmy(()?OvO) = 0
It follows that 1
Tf = 1—5(21‘24—23/2—1—27:2) 1— (22 +y*+ 27

and the remarks at the end of the solution to Exercise 8 also apply here.

13. As in many of the preceding exercises, we shall begin by computing first and second
partial derivatives of f at (0,0,0):

flx,y,z) = sinzyz = f(0,0,0) = 0
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fe(z,y,2) = yzcosxzyz = f(0,0,0) = 0
fox(z,y,2) = —y?2Psinzyz =  f..(0,0,0) = 0
fey(z,y) = zcoszyz — xyz’sinwyz == f,,(0,0,0) = 0

We can now use the fact the f(z,y,2) is symmetric in z, y and z to find the remaining two first
partial derivatives of f and the remaining four second partial derivatives of f; these are obtained
by interchanging the roles of the three variables consistenly in each of the given expressions, and
it follows that all of the first and second partial derivatives at (0,0,0) must be zero. This means
that the second degree Taylor polynomial approximation to f is the zero polynomial.

14. Using the computations from Exercise 8 we can write down the Hessian directly:
-2 0
nro0) = [2 %)

15.  The first step is to calculate the first and second partial derivatives of f:

felz,y,2) = 32° 4+ 2y
fu(z,y,2) = 2* — 22
folz,y,2) = —2yz + 62°
foz(zyy,2) = 6z + 2y
fyy(@,y,2) = 0
for(myy,2) = =2y + 12z
foy(z,y) = 22
fyz(z,y) = —2z
faz(z,y) = 0
It follows that the Hessian matrix is given by
6xr + 2y 2x 0
2z 0 —2z
0 —2: -2y + 122

and if we evaluate this at (1,0,1) we find that

6 2 0
Hf(1,0,1) = |2 0 -2
0 -2 12

18.  We shall simply write this out using the computations from Exercise 15:
1
Tof = 3 4+ 3@x—1) + 6(z—1) + 3 (6(z —1)* + 4(z— 1)y — 4y(z—1) + 12(z —1)?)

26. Students are not responsible for knowing how to work this problem.

28. Ditto.
30. Ditto.
31. Ditto.



