
Some items from the lectures on Colley, Section 4.1

TAYLOR POLYNOMIAL APPROXIMATIONS. Students who have taken a course on
infinite series have already seen Taylor’s formula for functions of one variable, but since such a
course is not a prerequisite for this one we shall summarize the main point.

The Mean Value Theorem for single variable functions states that, under suitable conditions,
we have

f(a + h) = f(a) + f ′(Y ) · h

where Y is between a and a + h. There are several versions of Taylor’s Formula for approximating
functions by polynomials of degree n, and the following one is an analog of the Mean Value Theorem:

Taylor’s Formula. If f has continuous derivatives of order ≤ n + 1 on some open interval

a − r < a < a + r, then for all h such that a + h lies in this interval we have

f(a + h) =

n
∑

k=0

f (k)(a) · hk

k!
+

f (n+1)(Y ) · hn+1

(n + 1)!

where f (k) denotes the kth derivative of f with f (0) = f , σ denotes the sum of all terms from k = 0
to n, and Y lies between a and a + h.

The summation part of the right hand side is called the nth degree Taylor polynomial for f at
a, which will sometimes be written Tnf(x; a) or Tnf(x) if a is understood, and the single summand
at the end is called the remainder term and written Rnf(x; a).

The derivation of this formula can be done in several ways (for example, in Widder’s book
cited in the text bibliography it is done using integration by parts), but we shall simply assume
this formula as known.

Example. Suppose we take f(x) = sinx with a = 0. The the third degree Taylor polynomial
approximation is given by x − 1

6x3. In order to determine the accuracy of this approximiation, we
shall use the full version of the formula with the remainder term

sinx = x − x3

6
+

Y 5

120

where Y is between 0 and x. For the sake of definiteness, we shall take x = π/4; in order to estimate
the accuracy of the third degree approximation, we need to get an upper estimate on the size of
the fifth degree term. Since

π

4
<

4

5

it follows that Y is between 0 and 4
5 , so a crude upper estimate for the fifth degree term can be

obtained by replacing Y with 4
5 . If we do this we see that the maximum error in the approximation

is no greater than
45

55 · 120
= 0.00273066 ...

and this is well within 1 per cent of the true value, which is 1
2

√
2 ≈ 0.707....

EXTENSION TO FUNCTIONS OF SEVERAL VARIABLES. In this course we shall
only need the first and second degree Taylor polynomial approximations; a discussion of higher
order Taylor polynomials appears on pages 241–243 of the course text. Also, since we can get by
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without discussing the form of the remainder term explicitly, we shall pass on trying to describe it
here. Further details are also available in Section V.4 (pp. 84–90) of the following online lecture
notes for a second linear algebra course:

http://math.ucr.edu/∼res/math132/linalgnotes.pdf

There is a clickable version of this link in the file weblinks4.pdf in the course directory.

The first degree Taylor polynomial approximation to a well-behaved function f(x1, x2, · · · ) is
given by the previous linear approximation formula:

T1f(a + h) = f(a) + ∇f(a) · h = f(a) +

n
∑

i=1

(

∂f

∂xi
(a)

)

· hi

The second degree Taylor polynomial is the sum of this with an appropriate second degree term;
here is the explicit formula:

T2f(a + h) = f(a) +

n
∑

i=1

(

∂f

∂xi
(a)

)

· hi +
1

2
·





n
∑

i,j=1

(

∂2f

∂xi∂xj
(a)

)

· hihj





If n = 2 and the variables are given by x and y and h = (h1, h2), then we may rewrite the second
degree part in the form

1

2

(

∂2f

∂x2
h2

1 + 2 · ∂2f

∂x∂y
h1h2 +

∂2f

∂y2
h2

2

)

and in three variables x, y, z one can rewrite this similarly using the convention that fuv is the
second partial derivative with respect to u and v:

1

2

(

fxxh2
1 + 2fxyh1h2 + fyyh2

2 + 2fxzh1h3 + 2fyzh2h3 + fzzh
2
3

)

In both of these displayed formulas, the second partial derivatives are evaluated at the reference
point a.

Answers to selected exercises from Colley, Section 4.1

2. In this problem, a = 0 and k = 3, and we have the following:

f(x) = loge(1 + x) =⇒ f(0) = 0

f ′(x) =
1

1 + x
=⇒ f ′(0) = 1

f ′′(x) =
−1

(1 + x)2
=⇒ f ′′(0) =

−1

1
= −1

f ′′′(x) =
2

(1 + x)3
=⇒ f ′′′(0) =

(−1)2 · 2
1

= 2

Substituting these into the Taylor polynomial formula, we find that the third degree approximation
is given by

T3f(x) = 0 + x − 1

2
x2 +

2

3!
x3 = x − x2

2
+

x3

3
.
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4. In this problem, a = 1 and k = 3, and we have the following:

f(x) =
√

x =⇒ f(1) = 1

f ′(x) =
1

2
x−(1/2) =⇒ f ′(1) =

1

2

f ′′(x) =
−1

4
x−(3/2) =⇒ f ′′(1) =

−1

4

f ′′′(x) =
3

8
x−(5/2) =⇒ f ′′′(1) =

3

8

Substituting these into the Taylor polynomial formula, we find that the third degree approximation
is given by

T3f(x) = 1 +
1

2
(x − 1) − 1

8
(x − 1)2 +

1

16
(x − 1)3 .

8. We shall begin by computing all the first and second partial derivatives of f at (0, 0):

f(x, y) =
1

1 + x2 + y2
=⇒ f(0, 0) = 1

fx(x, y) =
−2x

(1 + x2 + y2)2
=⇒ fx(0, 0) = 0

fy(x, y) =
−2y

(1 + x2 + y2)2
=⇒ fy(0, 0) = 0

fxx(x, y) =
6x2 − 2y2 − 2

(1 + x2 + y2)3
=⇒ fxx(0, 0) = −2

fyy(x, y) =
6y2 − 2x2 − 2

(1 + x2 + y2)3
=⇒ fyy(0, 0) = −2

fxy(x, y) =
8xy

(1 + x2 + y2)3
=⇒ fxy(0, 0) = 0

Substituting these into the Taylor polynomial formula, we find that the second degree approxima-
tion is given by

T2f(x) = 1 +
1

2

(

fxx(0, 0)x2 + 2fxy(0, 0)xy + fyy(0, 0)y2
)

= 1 − (x2 + y2) .

This corresponds to the answer one would get by substituting x2 + y2 into the geometric series for
1/(1 − z).

10. Once again we shall begin by computing all the first and second partial derivatives of
f at (0, 0):

f(x, y) = e2x+y =⇒ f(0, 0) = 1

fx(x, y) = 2e2x+y =⇒ fx(0, 0) = 0

fy(x, y) = e2x+y =⇒ fy(0, 0) = 0

fxx(x, y) = 4e2x+y =⇒ e2x+y = −2

3



fyy(x, y) = e2x+y =⇒ fyy(0, 0) = −2

fxy(x, y) = 2e2x+y =⇒ fxy(0, 0) = 0

Substituting these into the Taylor polynomial formula, we find that the second degree approxima-
tion is given by

T2f(x) = 1 + (fx(0, 0)x + fy(0, 0)y) +
1

2

(

fxx(0, 0)x2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
)

=

1 + 2x + y +
1

2

(

4x2 + 2(2)xy + y2
)

=

1 + 2x + y + 2x2 + 2xy +
y2

2
.

12. Once again we shall begin by computing the first and second partial derivatives of f at
(0, 0, 0):

f(x, y, z) =
1

1 + x2 + y2 + z2
=⇒ f(0, 0, 0) = 1

fx(x, y, z) =
−2x

(1 + x2 + y2 + z2)2
=⇒ fx(0, 0, 0) = 0

fy(x, y, z) =
−2y

(1 + x2 + y2 + z2)2
=⇒ fx(0, 0, 0) = 0

fz(x, y, z) =
−2z

(1 + x2 + y2 + z2)2
=⇒ fx(0, 0, 0) = 0

fxx(x, y, z) =
6x2 − 2y2 − 2z2 − 2

(1 + x2 + y2 + z2)3
=⇒ fxx(0, 0, 0) = −2

fyy(x, y, z) =
6y2 − 2x2 − 2z2 − 2

(1 + x2 + y2 + z2)3
=⇒ fyy(0, 0, 0) = −2

fzz(x, y, z) =
6z2 − 2x2 − 2y2 − 2

(1 + x2 + y2 + z2)3
=⇒ fzz(0, 0, 0) = −2

fxy(x, y) =
8xy

(1 + x2 + y2 + z2)3
=⇒ fxy(0, 0, 0) = 0

fyz(x, y) =
8yz

(1 + x2 + y2 + z2)3
=⇒ fxy(0, 0, 0) = 0

fxz(x, y) =
8xz

(1 + x2 + y2 + z2)3
=⇒ fxy(0, 0, 0) = 0

It follows that

T2f = 1 − 1

2
(2x2 + 2y2 + 2z2) 1 − (x2 + y2 + z2)

and the remarks at the end of the solution to Exercise 8 also apply here.

13. As in many of the preceding exercises, we shall begin by computing first and second
partial derivatives of f at (0, 0, 0):

f(x, y, z) = sinxyz =⇒ f(0, 0, 0) = 0

4



fx(x, y, z) = yz cos xyz =⇒ f(0, 0, 0) = 0

fxx(x, y, z) = −y2z2 sinxyz =⇒ fxx(0, 0, 0) = 0

fxy(x, y) = z cos xyz − xyz2 sinxyz =⇒ fxy(0, 0, 0) = 0

We can now use the fact the f(x, y, z) is symmetric in x, y and z to find the remaining two first
partial derivatives of f and the remaining four second partial derivatives of f ; these are obtained
by interchanging the roles of the three variables consistenly in each of the given expressions, and
it follows that all of the first and second partial derivatives at (0, 0, 0) must be zero. This means
that the second degree Taylor polynomial approximation to f is the zero polynomial.

14. Using the computations from Exercise 8 we can write down the Hessian directly:

Hf(0, 0) =

[

−2 0
0 −2

]

.

15. The first step is to calculate the first and second partial derivatives of f :

fx(x, y, z) = 3x2 + 2xy

fy(x, y, z) = x2 − z2

fz(x, y, z) = −2yz + 6z2

fxx(x, y, z) = 6x + 2y

fyy(x, y, z) = 0

fzz(x, y, z) = −2y + 12z

fxy(x, y) = 2x

fyz(x, y) = −2z

fxz(x, y) = 0

It follows that the Hessian matrix is given by




6x + 2y 2x 0
2x 0 −2z
0 −2z −2y + 12z





and if we evaluate this at (1, 0, 1) we find that

Hf(1, 0, 1) =





6 2 0
2 0 −2
0 −2 12



 .

18. We shall simply write this out using the computations from Exercise 15:

T2f = 3 + 3(x − 1) + 6(z − 1) +
1

2

(

6(x − 1)2 + 4(x − 1)y − 4y(z − 1) + 12(z − 1)2
)

26. Students are not responsible for knowing how to work this problem.

28. Ditto.

30. Ditto.

31. Ditto.
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