
Some items from the lectures on Colley, Section 4.2

TESTS FOR EXTREMA. In this section we work extensively with second order Taylor poly-
nomial approximations.

For functions of a single variable, the first tests for the maxima and minima of a continuous
function on a closed interval are fairly straightforward. There are three types of points one must
consider.

(1) Critical points where the derivative is zero.
(2) Critical points where the derivative is undefined.
(3) Boundary points.

An example of the first type is given by f(x) = x2 on the interval −1 ≤ x ≤ 1. In this case
the solution to the equation f ′(x) = 0 is x = 0 and in fact x takes its minimum value there. An
example of the second type is given by f(x) = x2/3. In this case the minimum occurs at x = 0 and
f ′(0) is not defined (the tangent line to the graph is vertical). Finally, in both of the preceding
examples the maximum value occurs at the end points.

Sometimes one has functions for which there are relative maxima and minima which are distinct
from absolute maxima and minima. For example, consider the function f(x) = x3 − x over the
interval −2 ≤ x ≤ 2. The maxima and minima occur at the endpoints, but the equation 0 = f ′(x) =
3x2 − 1 has the two solutions x = ±

√

1/3. If we graph the function we see that f has a strict
relative maximum at the negative point and a strict relative minimum at the positive point. This

means that the values of f near these points are always less than f
(

−
√

1/3
)

and always greater

than f
(

√

1/3
)

respectively. for example, this holds if we take all points within 1
8

of x = ±
√

1/3.

In fact, there is a second derivative test which can often be used to show that there is
a relative maximum or minimum. If f ′(x) = 0 and f ′′(x) is negative, then the function has a
relative maximum at x, while if f ′(x) = 0 and f ′′(x) is positive, then the function has a relative
minimum at x. This can be a little confusing, but one way to remember this is to think of the
function x2, which has a minimum at 0 and whose second derivative is equal to 2 (both at 0 and
also everywhere else). If f ′′(x) = 0, then the second derivative test fails and one must look further;
for functions of one variable there are simple extensions of the second derivative test which need
not concern us here.

The situation is similar for continuous functions of several variables over closed bounded sets
of the form fi(x) ≥ 0, where i = 1, 2, · · ·, and the inequalities imply that there is some upper
bound M for the coordinates of all points in the set (equivalently, there s some upper bound on
the distances of all points in the set to some fixed point such as the origin). In this course we shall
only consider situations in which the partial derivatives are defined and continuous away from the
boundaries.

For functions of several variables, the analog of the equation f ′ = 0 is ∇f = 0, or equivalently
the vanishing of all the first partial derivatives at a point.

The analogous second derivative test in several variables is somewhat more complicated. Not
surprisingly, it involves all of the second partial derivatives; however, it also involves a relatively
substantial amount of linear algebra that is not covered until the end of Mathematics 132; the details
appear in the previously cited online document (see the file answers41.pdf or weblinks4.pdf).
Here we shall concentrate on trying to motivate the problems which arise, stating the main results,
and working some examples.
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Given a function of several variables and a critical point at which ∇f(x) = 0, the determinant
of the Hessian of f at x plays a role somewhat similar to that of the second derivative in the single
variable case. However, the following examples show that the situation is more complicated.

(1) If f(x, y) = x2 +y2, then the determinant of the Hessian is always equal to 4, and likewise
if f(x, y) = 4 − x2 − y2. The first function has a relative (in fact, absolute) minimum at
0 (the only point at which the gradient is 0), and similarly the second has a relative (in
fact, absolute) maximum at 0. Therefore the sign of the determinant of the Hessian does
not distinguish between maxima and minima.

(2) If f(x, y) = x2 − y2, then the determinant of the Hessian is always equal to −4, but the
function has neither a relative maximum or minimum at 0, which is again the only point at
which the gradient is 0. More precisely, for all w 6= 0 we know that f(w, 0) > 0 = f(0, 0)
and f(0, w) < 0 = f(0, 0). Therefore there are situations where the determinant of the
Hessian is nonzero but the function has neither a maximum of minimum. If one graphs
the surface z = x2 − y2 along the lines of Figure 2.23 on page 90 of the text, one can see
that the graph looks like the surface of a saddle near 0, and for this reason one often says
that the critical point 0 is a saddle point for f . This is related to the notion of unstable
equilibrium in physics. If we place a marble at 0 and push it in the x-direction, it will
move upward, but if we push it in the y-direction, it will move downward.

SECOND DERIVATIVE TESTS IN TWO VARIABLES. Suppose that we are given a
function f(x, y) defined on an open region U , and a is a point of U for which ∇f(a) = 0 (in other
words, all the first partial derivatives vanish at a).

The function f has a strict relative minimum at a provided the second partial derivative
fxx(a) is positive and the determinant of the Hessian of f at a is also positive.

The function f has a strict relative maximum at a provided the second partial deriva-
tive fxx(a) is negative and the determinant of the Hessian of f at a is positive.

The function f has a saddle point at a provided the determinant of the Hessian of f at
a is negative.

No conclusion can be obtained if the determinant of the Hessian of f at a is zero (in which
case we say there is a degenerate critical point).

These conditions exhaust all the possibilities, for if we have a 2× 2 matrix in which the upper
left entry is zero, then its determinant cannot be positive (why not?).

Example. Describe the critical points of f(x, y) = x3 − 3xy + y3. — We start by setting
∇f = 0. Since fx = 3x2 − 3y = 0 and fy = −3x + y2 = 0, we obtain the equations x2 = y and
y2 = x, so that x4 = x. The latter implies that x = 0 or 1, and if we substitute these back into
y = x2 we see that the critical points of f are (0, 0) and (1, 1).

Next, we have to find the Hessian, which means we must first find the second partial derivatives.
These are given by fxx = 6x, fyy = 6y, and fxy = −3. Therefore the Hessians at the two critical
points are given as follows:

Hf(0, 0) =

[

0 −3
−3 0

]

, Hf(0, 0) =

[

6 −3
−3 6

]

. The determinant of the first Hessian is −9, and hence f has a saddle point at (0, 0), while the
determinant of the second Hessian is 27. Since fxx(1, 1) = 6 > 0, it follows that f has a relative
minimum at (1, 1).
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Another example. We shall now work a maximum–minimum problem for a continuous
function on a closed bounded set of the type described before.

Find the maximum and minimum values of f(x, y) = x2 + y2 − x − y + 1 on the closed bounded

set defined by x2 + y2 ≤ 1.

There are two parts to this. First, one must find candidates for maxima and minima given by
critical points. Then one must examine the boundary to find candidates for critical points on this
set.

To find the critical points, we must solve the equation 0 = ∇f = (2x − 1, 2y − 1). The unique
solution to this system of equations is x = y = 1

2
, and we have f( 1

2
, 1

2
) = 1

2
. Next, we must look at

the boundary. The way to do this is to represent it by a parametrized curve, for this will translate
the boundary problem to an extrema problem for functions of one variable. For instance, we can
take the obvious parametrization x(t) = (cos t, sin t). With this parametrization the function on
the boundary becomes g(t) = 2− sin t− cos t. The maxima and minima for this function are given
by setting g′(t) = 0, and if we do this we find that the critical points between 0 and 2π are given
by 1

4π and 5
4π. Now the value of g at these points are 2 −

√
2 and 2 +

√
2 respectively. This tells

us that there are three possible values for the maximum and minimum value at f , and to find the
absolute maxima and minima we need only put these values in order. However, it is not difficult
to see that

1

2
= f

(

1

2

)

< 2 −
√

2 = f
(π

4

)

< 2 +
√

2 = f

(

5π

4

)

and we can read off the maximum and minimum from this display.

SECOND DERIVATIVE TESTS IN THREE VARIABLES. Suppose now that we are
given a function f(x, y, z) defined on an open region U , and a is a point of U for which ∇f(a) = 0
(in other words, all the first partial derivatives vanish at a). It will be convenient to introduce
some terminology; namely, the second principal minor of the Hessian will be the following 2 × 2
determinant:

∣

∣

∣

∣

fxx fxy

fxy fyy

∣

∣

∣

∣

The function f has a strict relative minimum at a provided the second partial derivative
fxx(a) is positive, the second principal minor of the Hessian of f at a is positive, and and
the determinant of the Hessian of f at a is also positive.

The function f has a strict relative maximum at a provided the second partial deriva-
tive fxx(a) is negative, the second principal minor of the Hessian of f at a is positive, and
and the determinant of the Hessian of f at a is negative.

The function f has a saddle point at a provided the determinant of the Hessian of f at
a is nonzero and neither of the preceding statements hold..

No conclusion can be obtained if the determinant of the Hessian of f at a is zero (in which
case we say there is a degenerate critical point).

Once again, the proof requires some input from linear algebra beyond the scope of this course.
The previously cited online reference gives a full discussion of this test and its extensions to functions
of four or more variables.
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Answers to selected exercises from Colley, Section 4.2

2. The gradient of g is given by (gx, gy) = (2x + 2,−4y), so that gxx = 2, gxy = 0, and
gyy = −4.

(a) To find the critical point, set ∇g = 0, obtaining the equations 2x + 2 = 0 = 4y, which
imply that there is one critical point given by (−1, 0).

(b) Direct computation shows that ∆g = g(−1+∆x,∆y)−g(−1, 0) is equal to (∆x)2−2(∆y)2.
Therefore small changes in x alone will result in an increase in the value of g and small changes in
y will result in a decrease in the value of g. Therefore f must have a saddle point at (−1, 0).

(c) The Hessian is given by

Hg(−1, 0) =

[

2 0
0 −4

]

and since the determinant of the Hessian is −8 it follows from the second derivative test that g has
a saddle point at (−1, 0).

4. We have

∇f =

(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1

)

and hence the only critical point of f is at the origin. The second derivatives are

fxx =
−2x2 + 2y2 + 2

(x2 + y2 + 1)2
, fyy =

2x2 − 2y2 + 2

(x2 + y2 + 1)2
, fxy =

4xy

(x2 + y2 + 1)2
.

At the origin, the Hessian is given by
[

2 0
0 2

]

and since the determinant of the Hessian and the upper left entry are both positive, it follows that
f has a relative minimum at (0, 0).

5. The gradient of f is (2x−6y +3, 3y2 −6x+6), so the critical points satisfy the equations
2x = 6y − 3 and 0 = 3y2 − 6x + 6, or equivalently 0 = y2 − 2x + 2. Substituting, we obtain the
equation 0 = y2−6x+5 = (y−1)(y−5). Therefore we have critical points at (3/2, 1) and (27/2, 5).
The second derivatives are fxx = 2, fyy = 6y, and fxy = −6. Thus the upper left entry is always
positive, and the determinant of the Hessian, which is 12y − 36, will be positive when y = 5 and
negative when y = 1; by the second derivative test, f has a saddle point at (3/2, 1) and a local
minimum at (27/2, 5).

10. The gradient of f is given by (1−2xy−y2, 1−2xy−x2). The critical points for f satisfy
the equations 1−2xy−y2 = 0 = 1−2xy−x2, and if we subtract 1−2xy from both sides we obtain
x2 = y2, so that x = ± y. If x = y, then 0 = 1 − 3x2, so that x = y = ± 1/

√
3. If x = −y, then

0 = 1+x2, which has no real solutions. So the critical points for f are ± (1/
√

3, 1/
√

3). The second
order partial derivatives are fxx = −2y, fyy = 2x, and fxy = −2x − 2y. The upper left entry of
the Hessian is equal to −2y, and the determinant of the Hessian is equal to −4x2 − 4xy − 4y2. At
the critical points the latter is negative and therefore f has a saddle point at both critical points
± (1/

√
3, 1/

√
3).
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11. The gradient of f is given by (2x − 2xy,−3y2 − x2 + 1. The first coordinate may be
rewritten as 2x(1− y), and this is zero only if x = 0 or y = 1. When x = 0, y must be ± 1/

√
3. No

solution corresponds to y = 1, so the critical points for f are (0,± 1/
√

3). The second derivatives
are fxx = 2 − 2y, fyy = −6y, and fxy = −2x. Thus the upper left entry of the Hessian is 2 − 2y
and the determinant of the Hessian is −12y +12y2 − 4x2). At (0,− 1/

√
3) the upper left entry and

determinant are positive, and therefore f has a local minimum at (0,− 1/
√

3). At (0, 1/
√

3), the
upper left entry of the Hessian is positive and the determinant is negative, so that f has a saddle
point at (0, 1/

√
3).

12. The gradient of f is
(

(e−x(2x− x2 − 3y2), 6ye−x
)

; since the second coordinate vanishes
if and only if y = 0, the latter must hold at a critical point for f . Using this, we see that the
first coordinate is either 0 or 2, so that there are critical points at (0, 0) and (2, 0). The second
derivatives are fxx = (2−4x+x2 +3y2)e−x, fyy = −6e−x, and fxy = −6ye−x. At (0, 0), the upper
left entry and determinant of the Hessian are positive so f has a local minimum there. At (2, 0),
the upperleft entry and determinant of the Hessian are negative so f has a saddle point there.

16. The gradient of f is (2x cos z, 4y cos z,−(x2 + 2y2 + 1) sin z). The third coordinate is
zero if and only if z = nπ, and since cos nπ 6= 0 it follows that if ∇f = 0 then x = y = 0. Therefore
the critical points are given by (0, 0, nπ). The second derivatives are fxx = 2 cos z, fyy = 4 cos z,
fzz = −(x2 + 2y2 + 1) cos z, fxy = 0, fxz = −2x sin z and fyz = −4y sin z. This means that the
second principal minor given by 8 cos 2z, and the determinant of the Hessian at the critical point
(0, 0, nπ) is (−1)n+18. Similarly, the second principal minor is always 8 and the upper left term is
(−1)n2. Hence the signs of the upper left entry and the determinant are opposite, which means
that these critical points are nondegenerate but cannot be relative maxima or minima. The only
remaining possibility is that they are all saddle points.

19. The gradient of f is (y + z − x−2, x + 2z, x + 2y). If ∇f = 0, then z + 2z = 0 = x + 2y
implies that y = z, which in turn implies that 2z = −x and 2z = x−2, so that −x =−2, which
means that x = −1. Therefore f has a critical point at (−1, 1

2 , 1
2 ) and nowhere else. The Hessian

is given by

Hf(x, y, z) =





2/x3 1 1
1 0 2
1 2 0





so that the upper left entry at the critical point is −2, the second principal minor is −1, and the
determinant is 12. It follows that the critical point is degenerate but the criteria for a relative
maximum or minimum are not met (the second principal minor is negative). Therefore the critical
point is a saddle point.

22. (a) The gradient of f is (2kx − y,−2x + 2ky), so that the origin is a critical point for
every value of k. The Hessian is

[

2k −2
−2 2k

]

so the upper left entry is 2k and the determinant is 4k2 −4. In oder for f to have a non-degenerate
local maximum or minimum the determinant must be positive, which is equivalent to k2 − 1 > 0,
so that either k > 1 or k < −1. If k > 1, then the upper left entry is positive and the origin is a
non-degenerate local minimum. If k < −1, then the upper left entry is negative and the origin is a
non-degenerate local maximum.
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(b) The gradient of f is (2kx + kz,−2z − 2y, kx − 2y + kz), and the Hessian is





2k 0 k
0 −2 −2
k −2 k



 .

First note that the upper left entry is 2k and the second principal minor is −4k. These have
opposite signs so a nondegenerate local minimum is not possible. In order to have a nondegenerate
local maximum the upper left entry must be negative and the second principal minor must be
positive, so that k > 0. The determinant of the Hessian must also satisfy 2k(−k − 4) < 0, so that
k ¡ -4. Therefore we have a nondegenerate local maximum when k < −4.

29. We shall actually minimize the square of the distance (i.e., the sum of the squares
of the differences in each direction). Since D(x, y) = x2 + y2 + (3x − 4y − 24)2, its gradient is
(20x − 24y − 144, 34y − 24x + 192). If we set these equal to 0 and solve, we find that the point on
the plane closest to the origin is (36/13,−48/13,−12/13).

32. The fly does not need to walk around the metal plate when searching for the hottest
and coldest points. The temperature is T (x, y) = 2x2 + y2 − y − 3 so its gradient is (4x, 2y − 1).
There is a critical point for T at (0, 1/2) and T (0, 1/2) = 2.75. To check the temperature of the
boundary we note that it is a unit disk and so x = cos θ and y = sin θ. We can rewrite

T (θ) = 2 cos2 θ + sin2 θ − sin θ + 3 = cos2 θ − sin θ + 4

and accordingly we also have

T ′(θ) = −2 cos θ sin θ − cos θ = − cos θ( sin θ + 1) .

Therefore, there are critical points on the boundary when cos θ = 0 (so θ = π/2 or 3π/2) and when
sin θ = −1/2 (so k = 7π/6 or 11π/6). Checking the values we see that T (π/2) = 3, T (3π/2) = 5 and
T (7π/6) = T (11π/6) = 21/4. We conclude that the coldest spot on the plate is at (0, 1/2) where
the temperature is 11/4 and the two hottest spots are at (±

√
3/2,−1/2), where the temperature

is 21/4.

33. Since the function f(x, y) is the product g(x)h(y) of a function of where the values of
g and h range between −1 and 1, we can analyze this example without results from multivariable
calculus. The maximum value for f is 1 and the minimum value for f is −1. The absolute maxi-
mum occurs at (π/2, 0), (π/2, 2π), and (3π/2, π). The absolute minimum is achieved at (3π/2, 0),
(3π/2, 2π), and (π/2, π).

34. The gradient of f is (−2 sinx, 3 cos y), so the ”ordinary” critical points on the solid
rectangle defined by 0 ≤ x ≤ 4, 0 ≤ y ≤ 3 are at (0, π/2) and (π, π/2) (in fact, the second one is the
only critical point which is actually in the interior of the rectangle.) Next we look at the boundary
of the rectangle. It is convenient to break this up into four parametrized curves corresponding to
the four sides of the rectangle:

g1(x) = f(x, 0) = 2 cos x, so that g′

1(x) = −2 sinx and there are critical points at (0, 0)
and (π, 0).

g2(x) = f(x, 3) = 2 cos x + 3 sin 3, so that g′

2(x) = −2 sinx and there are critical points at
(0, 3), (π, 3).

g3(y) = f(0, y) = 2+3 sin y, so that g′

3(y) = 3 cos y and there is a critical point at (0, π/2).
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g4(y) = f(4, y) = 2 cos 4 + 3 sin y, so that g′

4(y) = 3 cos y and there is a critical point at
(4, π/2).

Now we compare values:

f(0, π/2) = 5
f(π, π/2) = 1
f((0, 0) = 2
f(π, 0) = −2
f(0, 3) = 2 + 3 sin 3 ≈ 2.423
f(π, 3) = −2 + 3 sin 3 ≈ −1.577
f(4, π/2) = 2 cos 4 + 3 ≈ 1.693
f(4, 0) = 2 cos 4 ≈ −1.307
f(4, 3) = 2 cos 4 + 3 sin 3 ≈ −0.884

Thus the absolute minimum occurs at (π, 0) and is −2. Similarly, the absolute maximum occurs
at (0π/2) and is 5.

46.(a) To simplify the discussion we shall assume that f ′ is continuous. If f has a local
maximum at x0 and no other critical points, then f ′ must be nonzero everywhere else. It follows
that either f ′ is always positive or negative to the left of x0 and likewise to the right of x0; if it
changed signs to the left or right of x0, then there would be a point where the derivative would be
equal to zero. We claim that the signs of the derivative on opposite sides of x0 must be different. If
they are the same, then there are two cases depending upon whether the common signs are positive
or negative.

If f ′ is positive on both sides of x0, then by the Mean Value Theorem we know that f is strictly
increasing on the rays x ≤ x0 and x ≥ x0. Therefore if y < x0 < z we have f(y) < f(x0) < f(z),
and this means that f cannot have a strict relative maximum or minimum at x0. Likewise, if f ′

is negative on both sides of x0 and y < x0 < z then f(y) > f(x0) > f(z), so once again there is
no relative maximum or minimum at x0. Therefore the derivative is positive on one side of x0 and
negative on the other.

If f ′(t) < 0 for t < x0 and f ′(t) > 0 for t > x0, by the Mean Value Theorem we know that
f is strictly decreasing on the ray x ≤ x0 and strictly increasing on the ray x ≥ x0. Therefore if
y < x0 < z we have f(x0) > f(y), f(z) so that there is an absolute maximum at x0. Similarly, if
f ′(t) > 0 for t < x0 and f ′(t) < 0 for t > x0, by the Mean Value Theorem we know that f is strictly
increasing on the ray x ≤ x0 and strictly decreasing on the ray x ≥ x0. Therefore if y < x0 < z we
have f(x0) < f(y), f(z) so that there is an absolute minimum at x0.

(b) The gradient of f is (3yex − 3e3x, 3ex − 3y2). Solving the equation ∇f = 0, we see that
y = 0 or y = 1. However, we must have y 6= 0 because ex = y2. Thus te only critical point for
f is at (0, 1) and f(0, 1) = 1. Also, the lower left entry of the Hessian at (0, 1) is −6 and the
determinant of the Hessian at (0, 1) is 27, so that f has a local maximum at (0, 1). But the y-axis
we have f(0, y) = 3y − 1 − y3, so as y → −∞ we see that f(0, y) goes to +∞ (in other words, it
increases without bound).
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