
Some items from the lectures on Colley, Section 4.3

REGULAR CONSTRAINTS. The central theme of this section is to find maximum and
minimum values of a function f(x, y, z) subject to some sort of reasonable constraint of the form
g(x, y, z) = 0. Specifically, the constraint is reasonable if it satisfies a basic regularity condition: If

g(x, y, z) = 0, then ∇g(x, y, z) 6= 0.

MOTIVATING THE LAGRANGE MULTIPLIER RULE. Although the method is
extremely useful and very powerful, the reasons behind it are probably not immediately clear, so
we shall look at a simple example. Suppose that the constraint is given by an equation of the form
g(x, y, z) = z − h(x, y) = 0 and we want to maximize the function f(x, y, z) = z on this surface;
notice that this is a regular constraint because the z-coordinate of ∇g is always 1. Clearly the
given problem is equivalent to looking for maximum and minimum values of h(x, y), and a key step
to solving such a problem is to look at the points where the gradient satisfies ∇h(x, y) = 0. The
latter in turn is equivalent to the condition that the normal to the surface ∇g is a nonzero multiple
of (0, 0, 1), which is equal to ∇f . Since ∇g is the normal to the tangent plane of the constraint set,
it follows that ∇f is perpendicular to the tangent plane in this example. In fact this holds more
generally:

THEOREM. Suppose that p satisfies the regular constraint g(p) = 0 and gives a maximum or

minimum value for a reasonable function f over the surface Σ of points satisfying the constraint.

Then ∇f is perpendicular to the tangent plane of Σ at p, and accordingly ∇f is a multiple of ∇g.

This is illustrated in Figure 4.27 on page 263 of the text.

The theorem implies that there is a scalar λ such that ∇f = −λ∇g, or equivalently ∇(f+λg) =
0. Combining this with the constraint equation g(x, y, z) = 0, we obtain four equations in the four
unknowns x, y, z, λ, and in favorable cases (like most textbook problems) we can check that there
are finitely many solutions to such a system and solve for them explicitly.

Example. We shall work Exercise 29 from the preceding section using Lagrange multipliers:
Find the point on the plane 3x − 4y − z = 24 which is closest to the origin.

First of all, we must translate this into a constrained optimization problem; namely, minimize
the function f(x, y, z) = x2 + y2 + z2 subject to the constraint 0 = g(x, y, z) = 3x − 4y − z − 24.

The Lagrange Multiplier Method requires us to solve the system of equations given by ∇(f +
λg) = 0 and g(x, y, z) = 0. We need to write out the left hand side of the vector equation explicitly:

∇(f + λg) = ∇
(

(x2 + y2 + z2) + λ(3x − 4y − z − 24)
)

=

(2x + 3λ, 2y − 4λ, 2z + λ)

This vector equation implies that x = − 3

2
λ, y = 2λ, and z = − 1

2
λ. We can substitute these values

into the fourth equation in order to find λ:

0 = g

(

−3

2
λ, 2λ,−1

2
λ

)

= −9λ

2
− 8λ − λ

2
− 24 = −26λ

2
− 24

This means that λ = −24/13, and we can now substitute these values into the equations for x, y, z
to see that

z = −12

13
, y = −48

13
, x =

36

13
.
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One can check this answer geometrically; the shortest distance is realized by a perpendicular from
the origin to the plane, and in fact the value for (x, y, z) obtained above is a nonzero multiple of
the unit normal vector(s) to the plane.

A word problem. We wish to construct a box whose volume is 288 cubic inches. The
material for the bottom costs $5 per square foot, while the material for the top and sides costs only
$3 per square foot. Find the dimensions that will minimize the cost of materials.

Let x, y, z denote the dimensions of the box, where x, y denote the dimension of the bottom
and top. From the nature of the problem we know that x, y, z must all be positive, and the volume
constrain means that xyz = 288. The area of the bottom and top is xy, while two of the sides have
area xz and the remaining two sides have area yz. Therefore the cost of materials for the sides of
the box is given by

f(x, y, z) = 5xy + 3xy + 6xz + 6yz

(the first term is the cost of the bottom, the second is the cost of the top, and the remaining terms
are the costs of the two pairs of parallel sides — draw a picture to visualize this!). In this case the
vector equation becomes

0 = ∇(f − λg) =

∇
(

(5xy + 3xy + 6xz + 6yz) − λxyz
)

= (8y + 6z − λyz, 8x + 6z − λxz, 6x + 6y − λxy)

This leads to the equations

8

z
+

6

y
= −λ ,

8

z
+

6

x
= −λ ,

6

x
+

6

y
= −λ .

The first two combine to show that x = y (recall that x, y, z are positive so there are no problems
with zeros in the denominators). Similarly, the second and third combine to yield

z

8
=

x

6
, so that z =

4

3
x .

This means that the volume constraint may be rewritten in the form 288 = 4

3
x3, and the unique

positive solution to this equation is x = y = 6 and y = 8.

Finally, we should find the minimum cost which is realized for these dimensions. If we substitute
the values for x, y, z from the previous discussion we find that the cost is f(6, 6, 8) = 864.

MULTIPLE CONSTRAINTS. Sometimes we are given problems with more than one
constraint. For functions of three variables, this happens if we have two constraints g1(x, y, z) =
g2(x, y, z) = 0 which are regular in the sense that ∇g1(x, y, z) and ∇g2(x, y, z) are not multiples
of each other if g1(x, y, z) = g2(x, y, z) = 0. In this case, if we have a maximum or minimum at
p subject to the constraints then it turns out that ∇f(p) can be written in the form λ1∇g1(p) +
λ2∇g2(p) for suitably chosen scalars λ1 and λ2. We then end up with a system of five equations
in x, y, z, λ1, λ2 given by g1 = g2 = 0 and ∇(f +λ1g2 +λ2g2) = 0. Once again we solve this system
of equations to find the constrained maxima and minima.

There are analogs of the Lagrange Multiplier method for equations in any finite number of
variables with multiple constrains satisfying the corresponding regularity conditions, but we shall
not attempt to discuss them here.

NOTES. There is a corresponding theory for functions of two variables with one constraint;
the only difference is that there is no equation involving partial derivatives with respect to the third
variable.
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In some cases it is more convenient to replace equations like ∇(f + λg) = 0 with equations of
the form ∇(f −λg) = 0. The values of x, y, z obtained as solutions in both cases are the same, but
of course the value for λ changes sign.

Answers to selected exercises from Colley, Section 4.3

9.(a) The function is f(x, y) = x2 + y subject to the constraint g(x, y) = x2 +2y2 = 1. The
associated equation ∇(f − λg) = 0 now yields the following system of equations in x, y, λ:

2x = 2xλ , 1 = 4λ , x2 + 2y2 = 1

From the first equation, we know that 2x(1 − λ) = 0, so that either x = 0 or λ = 1. If λ = 1,
then y = 1

4
, so x = ±

√

7/8. If x = 0, then y = ± 1

2
. Thus the critical points are (±

√

7/8, 1

4
) and

(0,± 1

2
).

(b) To apply the second derivative test, we need to examine the Hessian of the function
L(λ;x, y) = x2 + y − λ(x2 + 2y2 − 1). The Hessian is given by

HL(λ;x, y) =





0 −2x −4y
−2x 2 − 2λ 0
−4y 0 λ



 .

One can now substitute the critical points to find that there are local maxima at (±
√

7/8, 1

4
) and

local minima at (0,± 1

2
).

17. The symmetry of the problem suggests the answer, but we are maximizing f(x, y, z) =
xyz subject to the constraint 0 = g(x, y, z) = x+y+z−18. The associated equation ∇(f−λg) = 0
now yields the following system of equations in x, y, z, λ:

xy = xz = yz = λ , x + y + z = 18

Since we want x, y, z to be positive, the solution has the form x = y = z, which implies that 3x = 18
the maximum product occurs at the point (6, 6, 6).

23. We want to minimize M(x, y, z) = xz−y2 +3x+3 subject to the constraint g(x, y, z) =
x2 + y2 + z2 = 9. This is given by solutions to the system

z + 3 = λx, −2y = λy, x = 2λz, x2 + y2 + z2 = 9 .

The second equation implies that either y = 0 or λ = −1. In the first case, we have z = −3, and
from this we get (0, 0,−3) and (±

√
3/2, 0, 3/2) as critical points. If λ = −1, we find the critical

points are (−2, 2, 1) and (−2,−2, 1). Comparing values of M , the minimum of -9 is attained at
either (−2, 2, 1) or (−2,−2, 1).

29. We want to find the extrema for f(x, y, z) = z subject to the constraints 0 = g1(x, y, z) =
x2 + y2 − z and 0 = g2(x, y, z) = x + y + 2z = 2. In this example the vector equation is

0 = ∇(f + λ1g1 + λ2g2) = (2xλ1 + λ2, 2yλ1 + λ2, 1 + λ1 + 2λ2) .

The vanishing of the first two coordinates implies that 2xλ1 = 2yλ1 = −λ2, and this means that
either λ1 = 0 or x = y. We can exclude the case λ1 = 0 because it leads to −λ2 = 2y · 0, and
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this contradicts the third coordinate equation 1 + λ1 + 2λ2 = 0. Substituting this into the first
constraint, we see that z = 2x2. Substituting the equation x = y into the second constraint we
obtain x + z = 1 and 2x2 + x − 1 = 0. The Quadratic Formula now implies that

x =
−1 ± 3

4

which in turn yields x = −1 or x = 1

2
. By previous steps we also know that y = −1 and y = 1

2
in

these respective cases, and also that z = 2 and z = 1

2
respectively. If we evaluate the function at

these two critical points, we find that the height takes a maximum value of 2 at (−1,−1, 2) and a
minimum value of 1

2
at ( 1

2
, 1

2
, 1

2
).
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