Physical interpretation of the gradient

In the lectures we have discussed some physical interpretations of the gradient. One is given in terms of the graph of some function $z=f(x, y)$, where f is a reasonable function - say with continuous first partial derivatives. In this case we can think of the graph as a surface whose points have variable heights over the $\boldsymbol{x y}$ - plane. An illustration is given below.

(Source: http://www.math.uri.edu/Center/workht/calc3/graphs1.html)
If, say, we place a marble at some point $(\boldsymbol{x}, \boldsymbol{y})$ on this graph with zero initial force, its motion will trace out a path on the surface, and in fact it will choose the direction of steepest descent. This direction of steepest descent is given by the negative of the gradient of f. One takes the negative direction because the height is decreasing rather than increasing.

Using the language of vector fields, we may restate this as follows: For the given function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$, gravitational force defines a vector field \mathbf{F} over the corresponding surface $z=f(x, y)$, and the initial velocity of an object at a point $(\boldsymbol{x}, \boldsymbol{y})$ is given mathematically by $-\nabla f(x, y)$.

The gradient also describes directions of maximum change in other contexts. For example, if we think of f as describing the temperature at a point $(\boldsymbol{x}, \boldsymbol{y})$, then the gradient gives the direction in which the temperature is increasing most rapidly.

Finally, here are some additional online references for gradients:
http://www.slideshare.net/leingang/lesson-15-gradients-and-level-curves/
http://www.youtube.com/watch?v=CmoxhxK8Org
http://www.youtube.com/watch?v=JJcltzIJWWQ\&feature=related

