NAME:

Mathematics 10A-001, Fall 2008, Examination 1

Answer Key

1. [20 points] Find the cross product $\mathbf{a} \times \mathbf{b}$ where $\mathbf{a}=(1,1,0)$ and $\mathbf{b}=(0,0,1)$. SOLUTION

The cross product is given by the 3×3 determinant formula:

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

In coordinates this can be rewritten as

$$
\left(\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|,\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|,\left|\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right|\right)
$$

and if we evaluate the 2×2 determinants giving the coordinates we obtain the vector $(1,-1,0)$.
2. [10 points] Find the value of x such that the vectors $(x, 3,2,1)$ and $(1,2,3,4)$ are perpendicular.

SOLUTION

The vectors are perpendicular if and only if their dot product is zero. But this dot product is

$$
x+(3 \cdot 2)+(2 \cdot 3)+(1 \cdot 4)=x+16
$$

so the dot product is zero if and only if $x=-16$.
3. [20 points] Let P be the plane defined by the equation $x+y+z=1$, let $\mathbf{x}=(2,3,4)$, and let L be the line through \mathbf{x} which is perpendicular to P. Find a second point on L.

SOLUTION

The perpendicular direction to the plane is given by the coefficients of the variables in the defining equation, so it is a nonzero multiple of $(1,1,1)$, and therefore the remaining points on L all have the form $(2+t, 3+t, 4+t)$ for some $t \neq 0$. Any particular choice of t will give a correct answer.
4. [15 points] The point X in the coordinate plane has polar coordinates $(\sqrt{3}, 5 \pi / 6)$. Find its rectangular coordinates. State your answer in a form not involving trigonometric functions. [Hints: $5 \pi / 6$ radians $=150^{\circ}=90^{\circ}+60^{\circ}, \cos 60^{\circ}=\frac{1}{2}$ and $\sin 60^{\circ}=\frac{1}{2} \sqrt{3}$.]

SOLUTION

We have $x=r \cos \theta$ and $y=r \sin \theta$, where $r=\sqrt{3}$ and $\theta=150^{\circ}$. The trigonometric functions of obtuse angles are given by $\cos \left(90^{\circ}+\theta\right)=-\sin \theta$ and $\cos \left(90^{\circ}+\theta\right)=\cos \theta$, so that $\cos 150^{\circ}=-\sin 60^{\circ}$ and $\sin 150^{\circ}=\cos 60^{\circ}$. If we substitute into the polar coordinate formulas we find that $x=-3 / 2$ and $y=\frac{1}{2} \sqrt{3}$.

Note. The sum formulas for sine and cosine are NOT given by $\sin (\alpha+\beta)=$ $\sin \alpha+\sin \beta$ or $\cos (\alpha+\beta)=\cos \alpha+\cos \beta$, and these incorrect formulas will almost always yield the wrong answer !!!
5. [15 points] Find the rectangular coordinate equation for the curve given by the polar coordinate equation $r=2 \cos \theta+4 \sin \theta$.

EXTRA CREDIT. [10 points] Describe this curve in one line or less. You need not give reasons for your answer.

SOLUTION

Multiply both sides by r to obtain $r^{2}=2 r \cos \theta+4 r \sin \theta$. This translates into the rectangular equation $x^{2}+y^{2}=2 x+4 y$.

EXTRA CREDIT

The equation defines a circle. Its center is $(1,2)$ and its radius is $\sqrt{5}$.
6. [20 points] Given that the vector $\mathbf{v}=(x, y, z)$ satisfies the equation $2 \mathbf{v}+$ $(3,11,7)=(5,9,17)$, find (the coordinates of $) \mathbf{v}$.

SOLUTION

We can rewrite the eqution as $(2 x+3,2 y+11,2 z+7)=(5,9,17)$, which is equivalent to the system of equations $2 x+3=5,2 x+11=9$, and $2 x+7=17$. If we solve this system we find that $\mathbf{v}=(x, y, z)=(1,-1,5)$.

