NAME: _____

Mathematics 10A–001, Fall 2008, Examination 1

Answer Key

1. [20 points] Find the cross product $\mathbf{a} \times \mathbf{b}$ where $\mathbf{a} = (1, 1, 0)$ and $\mathbf{b} = (0, 0, 1)$.

SOLUTION

The cross product is given by the 3×3 determinant formula:

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

In coordinates this can be rewritten as

$$\left(\begin{array}{cc|c}1&0\\0&1\end{array}\right|, \left|\begin{array}{cc}0&1\\1&0\end{array}\right|, \left|\begin{array}{cc}1&1\\0&0\end{array}\right|\right)$$

and if we evaluate the 2×2 determinants giving the coordinates we obtain the vector (1, -1, 0).

2. [10 points] Find the value of x such that the vectors (x, 3, 2, 1) and (1, 2, 3, 4) are perpendicular.

SOLUTION

The vectors are perpendicular if and only if their dot product is zero. But this dot product is

 $x + (3 \cdot 2) + (2 \cdot 3) + (1 \cdot 4) = x + 16$

so the dot product is zero if and only if x = -16.

3. [20 points] Let P be the plane defined by the equation x + y + z = 1, let $\mathbf{x} = (2, 3, 4)$, and let L be the line through \mathbf{x} which is perpendicular to P. Find a second point on L.

SOLUTION

The perpendicular direction to the plane is given by the coefficients of the variables in the defining equation, so it is a nonzero multiple of (1, 1, 1), and therefore the remaining points on L all have the form (2 + t, 3 + t, 4 + t) for some $t \neq 0$. Any particular choice of t will give a correct answer.

4. [15 points] The point X in the coordinate plane has polar coordinates $(\sqrt{3}, 5\pi/6)$. Find its rectangular coordinates. State your answer in a form not involving trigonometric functions. [*Hints:* $5\pi/6$ radians = $150^\circ = 90^\circ + 60^\circ$, $\cos 60^\circ = \frac{1}{2}$ and $\sin 60^\circ = \frac{1}{2}\sqrt{3}$.]

SOLUTION

We have $x = r \cos \theta$ and $y = r \sin \theta$, where $r = \sqrt{3}$ and $\theta = 150^{\circ}$. The trigonometric functions of obtuse angles are given by $\cos(90^{\circ} + \theta) = -\sin \theta$ and $\cos(90^{\circ} + \theta) = \cos \theta$, so that $\cos 150^{\circ} = -\sin 60^{\circ}$ and $\sin 150^{\circ} = \cos 60^{\circ}$. If we substitute into the polar coordinate formulas we find that x = -3/2 and $y = \frac{1}{2}\sqrt{3}$.

Note. The sum formulas for sine and cosine are **NOT** given by $\sin(\alpha + \beta) = \sin \alpha + \sin \beta$ or $\cos(\alpha + \beta) = \cos \alpha + \cos \beta$, and these incorrect formulas will almost always yield the wrong answer !!!

5. [15 points] Find the rectangular coordinate equation for the curve given by the polar coordinate equation $r = 2\cos\theta + 4\sin\theta$.

EXTRA CREDIT. [10 points] Describe this curve in one line or less. You need not give reasons for your answer.

SOLUTION

Multiply both sides by r to obtain $r^2 = 2r\cos\theta + 4r\sin\theta$. This translates into the rectangular equation $x^2 + y^2 = 2x + 4y$.

EXTRA CREDIT

The equation defines a circle. Its center is (1, 2) and its radius is $\sqrt{5}$.

6. [20 points] Given that the vector $\mathbf{v} = (x, y, z)$ satisfies the equation $2\mathbf{v} + (3, 11, 7) = (5, 9, 17)$, find (the coordinates of) \mathbf{v} .

SOLUTION

We can rewrite the equation as (2x+3, 2y+11, 2z+7) = (5, 9, 17), which is equivalent to the system of equations 2x + 3 = 5, 2x + 11 = 9, and 2x + 7 = 17. If we solve this system we find that $\mathbf{v} = (x, y, z) = (1, -1, 5)$.