NAME:
Mathematics 10A-001, Fall 2008, Examination 2

Answer Key

Reference material

Spherical to rectangular coordinates.
$x=\rho \cos \theta \sin \phi$
$y=\rho \sin \theta \sin \phi$
$z=\rho \cos \phi$
$\rho^{2}=x^{2}+y^{2}+z^{2}$

Selected values of trigonometric functions.
$\sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}$
$\sin 45^{\circ}=\cos 45^{\circ}=\frac{\sqrt{2}}{2}$
$\sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$

Degrees to radians conversion.
$180^{\circ}=\pi$ radians .

1. [15 points] Find spherical coordinates for the point whose rectangular coordinates are $\frac{1}{4}(\sqrt{2}, \sqrt{2}, 2 \sqrt{3})$.

SOLUTION

Using the formula for ρ on the preceding sheet we find that

$$
\rho=\frac{1}{4} \cdot \sqrt{2+1+(4 \cdot 3)}=\frac{1}{4} \cdot \sqrt{16}=1 .
$$

Next we solve for z using the formula on the preceding sheet, obtaining the equation

$$
\cos \phi=\frac{z}{\rho}=\frac{\sqrt{3}}{2}=\cos (\pi / 6)
$$

so that $\phi=\pi / 6$. Since $\sin (\pi / 6)=\frac{1}{2}$, the equations for θ become

$$
\cos \theta=\frac{x}{(1 / 2)}=2 x, \quad \sin \theta=\frac{y}{(1 / 2)}=2 y
$$

and since $x=\frac{1}{4} \sqrt{2}=y$, this means that $\cos \theta=\frac{1}{2} \sqrt{2}=\sin \theta$, which in turn means that $\theta=\pi / 4$.
2. [10 points] The polar coordinate equation

$$
r=\frac{5}{\sin \theta-2 \cos \theta}
$$

defines a line. Find the equation of this line in rectangular coordinates.

SOLUTION

Multiply both sides of the equation by the denominator to clear it of fractions. This yields the equation

$$
r \sin \theta-2 r \cos \theta=5
$$

and if we use the conversion formulas for polar and rectangular coordinates we obtain the equation $y-2 x=5$.
3. [20 points] If $u(x, y)=x^{3}-3 x y^{2}$, show that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

SOLUTION

The first partial derivatives are

$$
\frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}, \quad \frac{\partial u}{\partial y}=-6 x y
$$

so the "pure" second partial derivatives are

$$
\frac{\partial^{2} u}{\partial x^{2}}=6 x, \quad \frac{\partial^{2} u}{\partial y^{2}}=-6 x
$$

and if we add these together we obviously get zero.
4. [10 points] If $f(x, y)=e^{x^{2}+y^{2}}$, find the mixed partial derivative

$$
\frac{\partial^{2} f}{\partial x \partial y} .
$$

SOLUTION

If we differentiate f with respect to y we obtain $2 y e^{x^{2}+y^{2}}$, and if we now differentiate the latter with respect to x we obtain $2 y\left(2 x e^{x^{2}+y^{2}}\right)$, so the final answer is $4 x y \cdot e^{x^{2}+y^{2}}$.
5. [20 points] Let S denote the surface defined by the equation $x^{3}+y^{5}+z^{7}-3=0$. Find the equation of the tangent plane to S at $(1,1,1)$.

SOLUTION

If $f(x, y, z)=x^{3}+y^{5}+z^{7}-3$, then $\nabla f=\left(3 x^{2}, 5 y^{4}, 7 z^{6}\right)$, so that $\nabla f(1,1,1)=(3,5,7)$ and as such it is nonzero. Therefore the equation of the tangent plane is given by

$$
\begin{aligned}
\nabla f(3,5,7) \cdot(x, y, z) & =\nabla f(3,5,7) \cdot(1,1,1)= \\
3 x+5 y+7 z & =3+5+7=15
\end{aligned}
$$

6. [15 points] Find the directional derivative of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ in the direction $\mathbf{u}=\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$ at the point $(1,1,2)$.

SOLUTION

The formula for the directional derivative is

$$
\nabla f(1,1,2) \cdot \mathbf{u}
$$

so we need to find the gradient first. But $\nabla f=(2 x, 2 y, 2 z)$, so that $\nabla f(1,1,2)=(2,2,4)$. Therefore the directional derivative is equal to

$$
(2,2,4) \cdot\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)=\frac{4}{3}+\frac{4}{3}+\frac{4}{3}=4
$$

7. [10 points] Find the length of the piece of the spiral curve with parametric equations $\mathbf{x}(t)=(\cos t, \sin t, t)$ from $t=0$ to $t=2 \pi$.

SOLUTION

The length is given by

$$
L=\int_{0}^{2 \pi}\left|\mathbf{x}^{\prime}(t)\right| d t
$$

and $\mathbf{x}^{\prime}(t)=(-\sin t, \cos t, 1)$ means that

$$
\left|\mathbf{x}^{\prime}(t)\right|=\sqrt{\sin ^{2} t+\cos ^{2} t+1}
$$

so the length equals

$$
\int_{0}^{2 \pi} \sqrt{\sin ^{2} t+\cos ^{2} t+1} d t=\int_{0}^{2 \pi} \sqrt{2} d t=2 \sqrt{2} \pi
$$

