Reference table of trigonometric identities

Some basic identities. This compilation of trigonometric identities is the first part of the following online site:
http://www.sosmath.com/trig/Trig5/trig5/trig5.html
Familiarity with these identities will be assumed in the course (Math 10A - 001).

Reciprocal identities

$$
\begin{array}{ll}
\sin u=\frac{1}{\csc u} & \cos u=\frac{1}{\sec u}
\end{array} \quad \tan u=\frac{1}{\cot u}, ~\left(\quad \sec u=\frac{1}{\cos u} \quad \cot u=\frac{1}{\tan u} .\right.
$$

Pythagorean Identities

$$
\sin ^{2} u+\cos ^{2} u=1 \quad 1+\tan ^{2} u=\sec ^{2} u \quad 1+\cot ^{2} u=\csc ^{2} u
$$

Quotient Identities

$$
\tan u=\frac{\sin u}{\cos u} \quad \cot u=\frac{\cos u}{\sin u}
$$

Co-Function Identities

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-u\right)=\cos u \quad \cos \left(\frac{\pi}{2}-u\right)=\sin u \quad \tan \left(\frac{\pi}{2}-u\right)=\cot u \\
\csc \left(\frac{\pi}{2}-u\right)=\sec u \quad \sec \left(\frac{\pi}{2}-u\right)=\csc u \quad \cot \left(\frac{\pi}{2}-u\right)=\tan u
\end{array}
$$

Sum-Difference Formulas

$$
\begin{aligned}
& \sin (u \pm v)=\sin u \cos v \pm \cos u \sin v \\
& \cos (u \pm v)=\cos u \cos v \mp \sin u \sin v \\
& \tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}
\end{aligned}
$$

Double Angle Formulas

$$
\begin{aligned}
\sin (2 u) & =2 \sin u \cos u \\
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u \\
& =2 \cos ^{2} u-1 \\
& =1-2 \sin ^{2} u \\
\tan (2 u) & =\frac{2 \tan u}{1-\tan ^{2} u}
\end{aligned}
$$

Values for special angles. The following table is taken from the online site http://oakroadsystems.com/twt/special.htm.

$$
\begin{array}{rlr}
\sin 30^{\circ}=1 / 2, & \sin 60^{\circ}=(\sqrt{ } 3) / 2 \\
\cos 30^{\circ}=(\sqrt{ } 3) / 2, & \cos 60^{\circ}=1 / 2 \\
\tan 30^{\circ}=(\sqrt{3}) / 3, & \tan 60^{\circ}=\sqrt{ } 3
\end{array}
$$

It is also important to know the values of these functions at multiples of 90°. For example, the sine and tangent are zero at $\mathbf{0}^{\circ}$, while the cosine is equal to one, and the cosine is zero at $9 \mathbf{0}^{\circ}$, while the sine is equal to one and the tangent is undefined. The values at $\mathbf{1 8 0}{ }^{\circ}$ and $\mathbf{2 7 0}$ can be read off from these and the formulas in the table below.

Values for nonacute angles. The following table is taken from the online site http://oakroadsystems.com/twt/refangle.htm\#refangleTop.

$\sin \left(180^{\circ}-\mathrm{A}\right)=\sin \mathrm{A}$ $\sin (\pi-\mathrm{A})=\sin \mathrm{A}$	$\cos \left(180^{\circ}-\mathrm{A}\right)=-\cos \mathrm{A}$ $\cos (\pi-\mathrm{A})=-\cos \mathrm{A}$	$\tan \left(180^{\circ}-\mathrm{A}\right)=-\tan \mathrm{A}$ $\tan (\pi-\mathrm{A})=-\tan \mathrm{A}$
$\sin \left(180^{\circ}+\mathrm{A}\right)=-\sin \mathrm{A}$ $\sin (\pi+\mathrm{A})=-\sin \mathrm{A}$	$\cos \left(180^{\circ}+\mathrm{A}\right)=-\cos \mathrm{A}$ $\cos (\pi+\mathrm{A})=-\cos \mathrm{A}$	$\tan \left(180^{\circ}+\mathrm{A}\right)=\tan \mathrm{A}$ $\tan (\pi+\mathrm{A})=\tan \mathrm{A}$
$\sin (-\mathrm{A})=-\sin \mathrm{A}$	$\cos (-\mathrm{A})=\cos \mathrm{A}$	$\tan (-\mathrm{A})=-\tan \mathrm{A}$

The formulas on the last line are often called the Even-Odd Identities.

