Reference table of trigonometric identities

Some basic identities. This compilation of trigonometric identities is the first part of the following online site:

http://www.sosmath.com/trig/Trig5/trig5/trig5.html

Familiarity with these identities will be assumed in the course (Math 10A – 001).

Reciprocal identities

$$\sin u = \frac{1}{\csc u} \quad \cos u = \frac{1}{\sec u} \quad \tan u = \frac{1}{\cot u}$$
$$\csc u = \frac{1}{\sin u} \quad \sec u = \frac{1}{\cos u} \quad \cot u = \frac{1}{\tan u}$$

Pythagorean Identities

 $\sin^2 u + \cos^2 u = 1 \quad 1 + \tan^2 u = \sec^2 u \quad 1 + \cot^2 u = \csc^2 u$

Quotient Identities

 $\tan u = \frac{\sin u}{\cos u} \quad \cot u = \frac{\cos u}{\sin u}$

Co-Function Identities

$$\sin(\frac{\pi}{2} - u) = \cos u \quad \cos(\frac{\pi}{2} - u) = \sin u \quad \tan(\frac{\pi}{2} - u) = \cot u$$
$$\csc(\frac{\pi}{2} - u) = \sec u \quad \sec(\frac{\pi}{2} - u) = \csc u \quad \cot(\frac{\pi}{2} - u) = \tan u$$

Sum-Difference Formulas

$$\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$$
$$\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v$$
$$\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$$

Double Angle Formulas

$$\sin(2u) = 2\sin u \cos u$$
$$\cos(2u) = \cos^2 u - \sin^2 u$$
$$= 2\cos^2 u - 1$$
$$= 1 - 2\sin^2 u$$
$$\tan(2u) = \frac{2\tan u}{1 - \tan^2 u}$$

<u>Values for special angles.</u> The following table is taken from the online site <u>http://oakroadsystems.com/twt/special.htm</u>.

 $sin \ 30^{\circ} = \frac{1}{2}, \qquad sin \ 60^{\circ} = (\sqrt{3})/2$ $cos \ 30^{\circ} = (\sqrt{3})/2, \qquad cos \ 60^{\circ} = \frac{1}{2}$ $tan \ 30^{\circ} = (\sqrt{3})/3, \qquad tan \ 60^{\circ} = \sqrt{3}$

It is also important to know the values of these functions at multiples of 90° . For example, the sine and tangent are zero at 0° , while the cosine is equal to one, and the cosine is zero at 90° , while the sine is equal to one and the tangent is undefined. The values at 180° and 270° can be read off from these and the formulas in the table below.

Values for nonacute angles. The following table is taken from the online site <u>http://oakroadsystems.com/twt/refangle.htm#refangleTop</u>.

$sin(180^{\circ}-A) = sin A$	$cos(180^{\circ}-A) = -cos A$	$tan(180^{\circ}-A) = -tan A$
$sin(\pi-A) = sin A$	$cos(\pi-A) = -cos A$	$tan(\pi-A) = -tan A$
$sin(180^{\circ}+A) = -sin A$	$cos(180^{\circ}+A) = -cos A$	$tan(180^{\circ}+A) = tan A$
$sin(\pi+A) = -sin A$	$cos(\pi+A) = -cos A$	$tan(\pi+A) = tan A$
sin(-A) = -sin A	$\cos(-\mathbf{A}) = \cos \mathbf{A}$	tan(-A) = -tan A

The formulas on the last line are often called the *Even-Odd Identities*.