UPDATED GENERAL INFORMATION - DECEMBER 4, 2008

The following example was worked out in class yesterday:
Find the maximum value of the function $f(x, y, z)=x+y+z$ on the elliptic paraboloid defined by $z=4-x^{2}-y^{2}$.
The constraint is given by $0=g(x, y, z)=4-x^{2}-y^{2}-z$, and therefore we need to solve the system of equations given by this and $\nabla(f-\lambda g)=\mathbf{0}$. By definition we have

$$
\nabla(f-\lambda g)=(1+2 \lambda x, 1+2 \lambda y, 1+\lambda)
$$

and if we set each of the three coordinates equal to zero we can use the equation for the third coordinate to conclude that $\lambda=-1$. Substituting this back into the first two equations we see that

$$
0=1-2 x=1-2 y
$$

so that $x=y=\frac{1}{2}$. Substituting these back into the constraint we see that $z=4-\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}=$ $4-2 \cdot \frac{1}{4}=3 \frac{1}{2}$. Therefore the maximum occurs at the point $\left(\frac{1}{2}, \frac{1}{2}, \frac{7}{2}\right)$ and the maximum value is $f\left(\frac{1}{2}, \frac{1}{2}, \frac{7}{2}\right)=\frac{1}{2}+\frac{1}{2}+\frac{7}{2}=\frac{9}{2}$..

