
Comments on Colley, Section 5.1 
 

The purpose of this section is to motivate the concept of a multiple integral, and 

the discussion below is designed to include some additional background.  In this 

document we have used several drawings from the following online documents; 

however, the treatment in those documents is much different from the approach 

taken here. 
 

http://www.math.wisc.edu/~keisler/chapter_12.pdf 

 

http://www.math.wisc.edu/~keisler/chapter_4.pdf 

 

 For most if not all topics in multivariable calculus, it is useful to begin by 

reviewing the corresponding material in single variable calculus, and integration is 

one example of this principle.  Therefore we start with a quick review of definite 

integrals. 
 

One motivation for the definite integral is the problem of finding the areas of 

regions bounded by curves.   Some of the simplest examples are given by the 

regions bounded by the x – axis, the vertical lines x = a and x = b (as usual, we 

assume a  <  b), and the graph of some function y  =   f (x), where f is a continuous 

and positive valued function on the interval [a, b].    A typical example is sketched 

below 
 

 
The definition of the definite integral of f (x) from x = a to x = b reflects a simple 

principle:  One can approximate the area bounded by these curves by a finite 

collection of rectangles which geometrically approximate the pieces of the region 

A whose x – coordinates lie in suitable subintervals of [a, b].     

 



 
The shaded region in the drawing above is an approximation to the area bounded 

by the original curves, and it is often written in a form resembling 
 

 
 

Each summand on the left hand side represents the area of one rectangle in the 

collection.  The width of such a rectangle is ∆∆∆∆ x and the height is f (U) for some U 

in the associated interval on the x – axis.   

 

Given one approximation to the area, the natural next question is to find even 

better approximations.  Experience suggests that we can do this by taking more 

rectangles such that their widths are smaller than the widths for the original 

approximation (see the drawing below). 
 

 
 

If we continue this process, it is reasonable to ask whether the limit of the 

approximation sequence will be the area of the region bounded by the original 



curves.  This is true for most of the functions which arise in the sciences and their 

applications, but in order to justify this hypothesis it is necessary to give a formal 

proof; the latter is generally given in an undergraduate real variables course, and at 

this point all we need to know is that there is a well – behaved limit equal to the 

area if the function f is continuous on the interval or at least continuous “almost 

everywhere” on the interval (for example, there might be finitely many jump 

discontinuities as in the drawing below); in the area problem the function f is 

assumed to take positive values, but it turns out that all the mathematical 

discussion works regardless of whether or not the function’s values are all positive.  

We note the possibility of discontinuities because they play a particularly 

important role in the description of multiple integrals. 

 
(Source: http://en.wikipedia.org/wiki/File:Rectangular_function.svg ) 

 

In this example, the function has jump discontinuities at x = ± ½. 

 

 

Extension to functions of two variables 
 

 

If integration of functions in one variable corresponds to finding areas, then it is 

natural to guess that integration of functions in two variables corresponds to 

volumes.  This is indeed the case, and one approach to defining the integral of a 



function f (x, y)  of two variables is to view the integral as the volume of a 

particular solid.  For example if the function is continuous, positive valued, and 

defined on some solid rectangle D given by inequalities of the form a1 ≤ x ≤ a2,  

b1 ≤  y ≤ b2 (see the drawing),  

 
 

then the integral of f over D should correspond to the volume of the solid bounded 

by the xy – plane, the planes x  =  a1, x  =  a2, x  =  b1, x  =  b2,  and the graph of f. 
 

 

Double integral as volume under the surface z = 9 + x
2
 − y

2
, where |x|, |y|  ≤  2.  The rectangular region at 

the bottom of the body is the domain of integration, while the upper surface is the graph of the two – 

variable function to be integrated. 
 

(Source: http://en.wikipedia.org/wiki/Multiple_integral ) 

 

Specifically, we proceed as follows:  First, we partition the original solid 

rectangular region D into a finite subcolletion of smaller, nonoverlapping solid 

rectangular regions as in the drawing below: 
 



 

 
 

 As suggested by the discussion above and the drawing below, a double Riemann 

sum of the form 
 

 

 
 

If we partition each of the small solid rectangular regions into even smaller small 

solid rectangular regions, then as before it should seem likely that the Riemann 



sum approximation to the volume will improve, and in fact one can prove this 

rigorously.  Furthermore, one might guess that if one takes a limit of Riemann sum 

approximations as the dimensions of the small rectangles go to zero in some 

reasonable way, then the values of these approximations tend to a limit value 

which is the volume of the original solid.  Once again, it is necessary to justify this 

theoretically by proving that a common limit value actually exists, but the details 

are beyond the scope of this course.  For our purposes it will suffice to know that 

the limit exists provided the function is continuous “almost everywhere.”  In the 

single variable case, the most basic examples of the latter were finite collections of 

points, but in the two – variable case one must also consider the points on finite 

collections of well – behaved curves (piecewise continuously differentiable are 

included in this). 

 

Additional online references 

 
We shall begin with some general references, including a site which covers both 

this course as well as its prerequisite, a site with further background material, and a 

site discussing common mathematical errors. 
 

http://tutorial.math.lamar.edu/Classes/CalcIII/CalcIII.aspx 
 

http://tutorial.math.lamar.edu/Extras/AlgebraTrigReview/AlgebraTrigIntro.aspx 
 

http://tutorial.math.lamar.edu/Extras/CommonErrors/CommonMathErrors.aspx 
 

The following items from the first site are particularly relevant to the material 

discussed above: 
 

http://tutorial.math.lamar.edu/Classes/CalcIII/DoubleIntegrals.aspx 

 

http://tutorial.math.lamar.edu/Classes/CalcIII/DIGeneralRegion.aspx 

 

The two sites listed below also contain numerous graphical examples, but the 

pictures appear and disappear rather quickly.  In order to examine them in a more 

leisurely fashion it is necessary to download the Mathematical Player software, for 

which a link is given. 
 

http://demonstrations.wolfram.com/RiemannSumsForFunctionsOfTwoVariables/ 
 

http://demonstrations.wolfram.com/DoubleIntegralForVolume/ 
 

 

http://www.wolfram.com/products/player/download.cgi  



Finally, here is one more site with animated drawings which are related to the 

preceding discussion. 
 

http://www.math.ou.edu/~tjmurphy/Teaching/2443/DoubleIntegrals/doubleIntegrals.html 

 

 

Most of the sites listed above are also relevant to the material in the 

next section of the course text. 
 

 

 
 

 
 

 


