
Comments on Colley, Section 5.2 
 

This section goes further into the properties of double integrals.  As before, we 

have used several drawings and displays from the following online document, but 

the treatment of material is much different here. 
 

http://www.math.wisc.edu/~keisler/chapter_12.pdf 
 

Several basic properties of double integrals are more or less to be expected, but 

they are important enough to be noted explicitly.  As before, we assume that we are 

integrating over a solid rectangular region D that is suitably placed with respect to 

the coordinate axes.  The first property is very simple to state: 
 

  If f(x,y) has a constant value c over D, then its integral is c times the area of D. 
 

Geometrically, this just reflects the principle that the volume of a right cylinder 

with base D and height c is equal to the given value.  

 

Here are some further properties: 

 

 
 

 

 

The latter property leads to the following important principle for estimating the 

values of double integrals. 



 
 

There is one more property to state, but before doing so we shall introduce another 

main point in this section; namely, the definition of double integrals for regions D 

that are not rectangular.  The idea is simple.  At this point we are only considering 

regions D that are bounded in the sense that the coordinates of all points in D are 

bounded,  so that there is some large solid rectangular region E which contains D.  

Given a function f on D, define an extended function fE such that fE is zero on all 

points which do not lie on D.  Then the integral of f over D is equal to the integral 

of f over fE.   

 
Once again it is necessary to use some logic in order to justify this definition and to 

show that it works in the basic cases of interest.  For example, we need to check 

that the value will not depend on the particular choice of rectangular region E.  

More important, we also need to check that a suitable limit exists for cases which 

arise frequently in the sciences and their applications.  One recurrent example is 

illustrated above; the region D is bounded by the two vertical lines and the graphs 



of the functions y = b1(x) and y = b2(x).  In this case the justification is given by the 

following fine print. 
 

If we have a continuous function on D and extend it to a continuous function on 

some larger rectangular region E, then the discontinuities of the function will all 

lie on the boundary curves of D, so the extended function is continuous almost 

everywhere, and we have already noted that the integral exists if the function is 

continuous almost everywhere on a rectangular region. 
 

With these conventions, all the preceding properties of double integrals go through 

for reasonable closed regions D.  Furthermore, we also have the following crucial 

fact: 

 
 

Computing double integrals 
 

 

None of the definitions or properties of double integrals are necessarily useful 

unless we have some way of computing them, at least in important cases.  In 

ordinary multivariable calculus, the Fundamental Theorem of Calculus is an 

extremely powerful tool for computing ordinary integrals, and we need some way 

of “leveraging” this into a comparable tool for double integrals.  The means for 



doing this is given by iterated integrals, and the main result is given below.  In 

effect, it reduces the computation of double integrals to the computation of two 

ordinary integrals if D is given as before as a region bounded by the two vertical 

lines x = a1 and x = a2 along with the graphs of the functions y = b1(x) and y = 

b2(x). 

 
 

The basic idea is to begin by integrating the inside integral with respect to y, with x 

viewed as a constant.  Since the upper and lower limits of the inside integral are 

given in terms of x, the inside integral will be some function of x.  We can then 

(try to) integrate this function with respect to x in any of the usual ways to obtain a 

precise numerical value.  Obviously this works well in many cases; for example, 

there will be no problems if the functions y = b1(x) and y = b2(x) are polynomials in 

x and  f (x, y)  is a polynomial in x and y.  Animation in the previously cited file 
 

http://www.math.ou.edu/~tjmurphy/Teaching/2443/DoubleIntegrals/doubleIntegrals.html 
 

motivates and illustrate the Iterated Integral Theorem. 
 

Many (most?) of the homework problems in Sections 5.1 and 5.2 involve special 

cases of the Iterated Integral Theorem with specific choices for the functions b1(x), 

b2(x) and  f (x, y).  In some cases, the regions are not given explicitly in the nice 

form and it is necessary to do some work in order to find the limits of integration.  

For example, the region D might be given as the one bounded by the line y = 2x 

and the parabola y = x
2
 – 3.  In this case one would begin by sketching the region 

(do it now!), and noticing that (1) the two curves meet at a pair of points with 

different first coordinates, (2) between these two coordinates the line y = 2x is 

above the parabola y = x
2
 – 3.  This immediately gives us b1(x) and b2(x), so all we 

need to do is find the limits of integration with respect to x.  These are given by the 

solutions to the quadratic equation 2x = x
2
 – 3, whose roots are given by 3 and – 1.  

Therefore, – 1 and 3 are the desired limits of integration with respect to x in this 

example.  

 

 



Further cases 

 
Everything above will go through if we interchange the roles of x and y, in which 

case the region D is bounded by the two vertical lines y = b1 and y = b2 along with 

the graphs of the functions x = a1(y) and x = a2(x).  A typical region of this type is 

illustrated below: 
 

 
 

For such an example, the double integral is given by an iterated integral such that 

the inside term is formed by integration with respect to x and the outside term is 

formed by intersection with respect to y. 

 
 

Of course, there are many regions which cannot be expressed in either of the terms 

we have described.  One example, illustrated below, is the set of all points in the 

coordinate plane (x, y) such that either (i) 1 ≤ x ≤  2  and  0 ≤ y ≤  2   or else   

(i i) 0 ≤ y ≤  2  or  1 ≤ x ≤  2.  
 

 
 

This region D splits into two regions D1 and D2 along the curve y = x, where one 

has the form 1 ≤ x ≤  2 and  0 ≤ y ≤  x (shaded in green), and the other has the 

form  1 ≤ y ≤  2 and  0 ≤ x ≤  y (shaded in pink).   One can integrate over D by 



using this decomposition of D into D1 and D2 together with the Addition Formula 

and the Iterated Integral Theorem(s). 
 

Most of the reasonable closed regions encountered in undergraduate mathematics 

or the sciences have finite decompositions into nonoverlapping pieces for which 

one of the iterated integral formulas is valid (see Widder, Advanced Calculus, p. 

225, for a reference and example). 

 

 

 
Additional references 

 
In the preceding discussion we mentioned the following classic text:  
 

D. V. Widder.   Advanced  Calculus.  Dover, 1989. 
 

This book is written at a somewhat more advanced level than the course text, but it 

often has more complete information on certain points.  The following 

outline/review book is also recommended to those who wish to see things from a 

viewpoint related to these notes but with more details: 
 

Colin Adams, Abigail Thompson and Joel Hass.   How to Ace the Rest of 

Calculus: The Streetwise Guide, Including Multi-Variable Calculus.  
Freeman, 2001.  

 

Partial previews of this book are available on the World Wide Web. 

 

The following online item from a previously noted site is also relevant to this 

section: 
 

http://tutorial.math.lamar.edu/Classes/CalcIII/DIGeneralRegion.aspx 

 
 


