
Comments on Colley, Section 5.3 
 

Interchanging the order of integration is a standard technique in multivariable 

calculus, and problems on this topic appear in the exams for most if not all 

multivariable calculus courses.  Some illustrations below are taken from a 

previously cited reference:  http://www.math.wisc.edu/~keisler/chapter_12.pdf. 
 

The basic idea is simple.  Suppose that we are given a region D which can be 

described as the region between two graphs y = g(x), y = h(x), where g and h are 

strictly increasing functions defined on the interval [a, b] which satisfy g  ≤  h, and 

for the sake of convenience let us also assume that the values of g and h at the 

endpoints a and b are equal.  For example, over the unit interval [0, 1] we can take 

g(x) = x
r
 and h(x) = x

s
, where 0 < s < r.  A typical example is illustrated below. 

 

 
 

In the drawing it is clear that one can also describe the shaded region as the one 

bounded by the graphs of x = y
2
 and x = y

1/2
.  Therefore there are two different 

ways of expressing the integral of the shaded region as an iterated integral:  One 

can integrate first with respect to y and then with respect to x or vice versa.  More 

generally, if g and h are as in the preceding paragraph and we set  c  =  g(a)  =  f(a) 

and  d  =  g(b)   =  f(b), suppose that p and q are the inverse functions to f and g; in 

other words, x  =  p(y) if and only if  y  =  g(x), and x  =  q(y) if and only if  y  =  

h(x).  Then the region defined by the conditions a  ≤  x  ≤  b and g(x)  ≤  y  ≤  h(x) 

is also defined by the conditions c  ≤  y  ≤  d and q(y) ≤  x  ≤  p(y).  Notice the 

placement of p and q in the inequality; when one takes the inverse functions it is 

necessary to reverse the directions of inequalities.   
 

Example.  Suppose we modify the drawing above, taking instead the graphs of the 

functions y = x
2
 and y = x

1/3
 (so the first graph lies below the second over the 

interval  [0, 1]).  This region can also be described as the region bounded by the 

lower curve x = y
3
 and x = y

1/2
. 



A similar principle holds if g and h are both strictly decreasing; in this case the 

directions of the inequalities for the inverse functions do not change.   Here is an 

example with a curious additional property:  Each of the functions g and h is 

equal to its own inverse.   The coordinates of the intersection points for these 

curves are (½, 2) and (2, ½); one finds these values by solving g(x) = h(x).  
 

 
 

A standard interchange formula (sometimes called Dirichlet’s formula) 

 
(The name is pronounced DEER – i – shlay.) 

 

There are also other cases in which one can interchange the order of integration.  

One particular example is the solid triangle defined by the inequalities 0 ≤ x ≤ 1 

and 0 ≤ y  ≤ x (the shaded region in the drawing below).   
 

 
 

This region is also describable by the conditions 0 ≤ y ≤  1 and y ≤ x ≤  1, 

and therefore we have the following integral identity. 
 



 

(Source: http://calculuspowerup.com/the-order-of-integration-and-fubinis-theorem/ ) 

One should compare this result to the true – false questions 5.7.5 and 5.7.7 on page 

357 of Colley and determine whether the formulas in those questions are correct.  

Notice that the formula is not symmetric in the x and y variables.   

 

The first step in working any problem on interchanging the order of integration is 

to draw a good picture and to determine important visual features, like where 

various curves meet and where one curve is positioned with respect to the other(s).   

Frequently one can use interchanging the order of integration to put a double 

integral into simpler terms.  A typical problem of this sort is Example 2 on pages 

310 – 311 of Colley. 

 

 

 



 

 

 


