
Comments on Colley, Section 5.4 
 

In the first course in this sequence there was a natural progression from functions 

of one variable to functions of two and three variables, and ultimately even more 

variables.  Similarly, there is a natural progression from ordinary integration and 

double integration to triple and even higher order multiple integrations.  In this 

course we shall consider triple integration only because it is used in many branches 

of the sciences and engineering, while quadruple and higher order integrals appear 

only in more advanced contexts.  Once again we shall use illustrations from the 

online notes http://www.math.wisc.edu/~keisler/chapter_12.pdf  at various points. 
 

 We began the discussion of double integrals with a problem from physics that 

illustrated the need for such integrals, and we shall proceed similarly for triple 

integrals.  Suppose that we are given a rectangular box which is filled by 

material(s) of variable density, and we wish to compute its mass.  One response to 

such a problem is simply to weigh the object in question, but there are cases in 

which this is not possible and one needs some indirect method of determining the 

object’s mass. 
 

If the density of an object is constant, then one has the elementary formula  
 

mass = density × volume 
 

from high school science courses, and we shall use this to compute estimates for 

the mass of a rectangular box for which the variable density is given by some 

nonnegative valued continuous function  f (x, y, z).  As in the case of double 

integrals, the first step is to partition the original rectangular box into smaller boxes 

over which the density does not fluctuate very much.    
 

 



 

The mass of each smaller box is approximately equal to   f ( xi , yj , zk ) ∆∆∆∆ xi ∆∆∆∆ yj ∆∆∆∆ zk , 

and the mass of the large box will be approximately equal to the sum of these 

terms.  The mathematical name for such an expression is a triple Riemann sum. 

 
If we partition each of the small solid rectangular boxes into even smaller small 

solid rectangular boxes, then as before it should seem likely that the Riemann sum 

approximation to the mass will improve, and in fact one can prove this rigorously.  

Furthermore, just as before one might guess that if one takes a limit of Riemann 

sum approximations as the dimensions of the small boxes go to zero in some 

reasonable way, then the values of these approximations tend to a limit value 

which is the mass of the original solid.  Once again, it is necessary to justify this 

theoretically by proving that a common limit value actually exists, but the details 

are beyond the scope of this course, and as before it will suffice to know that the 

limit exists provided the function is continuous “almost everywhere.”  In the three 

variable case, the “almost everywhere” condition is satisfied if the function is 

continuous off a finite collection of surfaces. 
 

Triple integrals have many properties similar to those of double integrals.  Here is 

one of the most important ones. 

 

 
 
Suppose that E is the rectangular box defined by the inequalities 

 
and let  f be a continuous function defined on  E.  Then the triple integral 

 
is equal to each of the following six iterated integrals: 



 
 

 

 
One can now define triple integrals over more general bounded regions by the 

same process used in the case of two variables:  Extend the original function to 



some large rectangular box as above by setting it equal to zero off the original 

region, and then form the integral of this extended function.  One can view this 

physically as expanding the original object A to a rectangular box in which there is 

no mass, and hence zero density, outside of A. 
 

There is a corresponding iterated integral formula for evaluating triple integrals 

over special types of elementary regions defined by inequalities as follows: 
 

a ≤ x ≤ b,    f(x)  ≤ y ≤ g(x),    a(x, y)  ≤ z ≤ b(x, y) 
 

A typical 3 – dimensional region of this type is illustrated below: 

 
 

(Source:  http://en.wikipedia.org/wiki/Multiple_integral ) 

 

Here is the formal statement that we want: 

 

 



Similar formulas hold if one interchanges the roles of x, y and z in the preceding 

discussion. 
 

As in the 2 – dimensional case, one can use these formulas as one step in 

computing triple integrals over more general regions by splitting the latter into 

elementary regions, computing the integrals of the latter using the iterated integral 

formula(s), and finishing by applying the following identity: 
 

 
 

Expressing regions conveniently 

 
Problems of this sort often involve good skills in space perception, and as such 

they can be extremely difficult.   Here are two examples. 

 

1. Find an iterated integral expression for evaluating the triple integral of the 

function  f (x, y, z)   over the closed region in the first octant bounded by the  xy –, 

yz – and  xz – planes and the plane with equation  5x + 3y + z  =  15. 
 

A very rough sketch of the region is given below; it is a triangular pyramid (a 

tetrahedron) whose base is a right triangle.  The vertices of this pyramid are given 

by the origin,  (3, 0, 0),   (0, 5, 0) and  (0, 0, 15). 
 

 

 

 



In this example, x varies between 0 and 3, while z varies between 0 (the xy – plane) 

and 15 – 5x – 3y,  so the only things left to check are the limits of integration for y 

expressed in terms of  x.  These limits are given by the shadow of the region on the 

xy – plane, and this shadow is the solid triangular region whose vertices are the 

origin, (3, 0, 0), and (0, 5, 0).  One limit is the line  y = 0, and the other is the line 

with equation  5x + 3y  =  15.  If we solve this for  y, we find that the 

corresponding limit of integration is the line with the following equation: 
 

 
 

2.  Here is an example where the region is bounded by a pair of surfaces.  Suppose 

that the region is bounded by the elliptic paraboloid with equation z  =  x
2
 + y

2
 and 

the plane z  =  2x + 3.  The first of these surfaces is sketched below. 
 

  

 

(Source: http://www.math10.com/en/geometry/analytic-geometry/geometry4/22.jpg ) 

 

One way to obtain some insight into the given region is to look at its intersection 

with the xz – plane.  The intersection of the paraboloid with this plane is just the 

parabola z  =  x
2
, while the intersection of xz – plane with the plane z  =  2x + 3 is 

merely the line with the same equation.  This planar cross section is sketched 

below (but not to scale): 
 

 
 



 
 

The drawing indicates that the plane z  =  2x + 3  lies above the elliptic paraboloid, 

so that the z limits of integration go from x
2
 + y

2
 to 2x + 3.   The corresponding 

region of integration in the xy – plane is given by the shadow of the original 3 – 

dimensional region over the xy – plane; more precisely, these are the feet of 

perpendiculars dropped from points in the region.  Algebraically, this is equal to 

the set of all points (x, y) such that (x, y¸ z) lies in the original region.  To illustrate 

this, we shall reprint an earlier illustration; observe that D is the shadow of T. 
 

 
 

In order to find the x and y limits of integration over this shadow, we need to find 

the shadow of the curve at which the two surfaces meet.  This shadow curve is 

given by the equation  x
2
 + y

2
  =  2x + 3.   This is the equation of some conic in the 

plane, and it turns out that the latter equation can be rearranged to have the form  

(x – 1)
2
 + y

2
  =  4, so that the shadow of the intersection curve is a circle.  The 

shadow region in the xy – plane is merely the solid disk bounded by this circle. 
 

It is now fairly straightforward to compute the x and y limits of integration using 

the disk and boundary circle we have just found.  In particular, we can conclude 

that  – 2  ≤  x – 1  ≤  2, or equivalently  – 1  ≤  x  ≤   3.  Similarly, the y limits of 

integration are between   ± sqrt (4 – (x – 1)
2).  Since we have already given the z 

limits of integration, we are finished. 

 

 


