
Comments on Colley, Section 6.2 
 

The Fundamental Theorem of Calculus states that the integral of a function over a 

closed interval [a, b] is equal to the difference of its values at b and a.  If we agree 

that a 0 – dimensional integral is a sum of values of a function at finitely many 

points with weight factors  + 1, then we can say that a 1 – dimensional integral 

over an interval is equal to a 0 – dimensional integral over the boundary points. 

Green’s Theorem is an analog which relates the double integral over a region D to 

a suitably weighted line integral over the boundary ∂∂∂∂D (for the time being, assume 

that the boundary consists of a single curve ΓΓΓΓ).  As before, we use some drawings 

and displays from the following online document, but the treatment of material is 

much different here. 
 

http://www.math.wisc.edu/~keisler/chapter_13.pdf  
 

Here is a typical example, in which the region D is the sort over which one often 

considers double integrals: 
 

 
 

(Source: http://en.wikipedia.org/wiki/Green%27s_theorem) 
 

Assume now that we are given a vector field  F(x, y) defined on  D such that the 

first and second coordinates of  F(x, y) are functions  P(x, y)  and  Q(x, y)  with 

continuous partial derivatives.  We also assume that we have a counterclockwise 

parametrization of the boundary curve ∂∂∂∂D, which according to the picture may be 

viewed as a concatenation (stringing together) of the curves C1, C2, C3 and C4.   In 

this case, we can state the main result of this section as follows: 

 



 

 
As in the course text, it is fairly straightforward to verify this equation in simple 

cases like rectangular and triangular regions.  One can also use change of variables 

formulas to establish the result for regions which are transforms of such regions by 

a mapping of the sort considered in Section 5.5, and it is even possible to prove 

Green’s Theorem in far more general cases by combining such special cases with 

some additional concepts which are beyond the scope of this course but are alluded 

to in “Step 2” on page 387 of the course text. 
 

Line integrals and area.  One can use line integrals to compute a wide range of 

quantities.  For example, if  γγγγ     is a curve whose tangent vectors are given by the 

vector field F 
 

γγγγ '( t )   =   F(x(t), y(t)) 
 

then the line integral of F over γγγγ turns out to be the arc length of the curve.  This 

may not be particularly surprising, but it is probably less apparent that one can also 

use Green’s Theorem to compute the area of a region  D  using a line integral over 

the boundary.  All we need to do is to find a vector field  F  such that the integrand 

of the double integral in Green’s Theorem is equal to 1.   The standard examples of 

such integrands are given by – y dx,  x dy,  and the average of these two 

expressions (see Example 2 on pages 382 – 383 of the text).  Exercises 6.2.10 and 

6.2.13 (on page 389 of the course text) are examples in which area computation by 

means of line integrals is much easier than using the standard double integral. 

 

Very general forms of Green’s Theorem.  We have already noted that the theorem 

holds for fairly general types of regions such that the boundary is a piecewise 

smooth simple closed curve.  However, in some situations one needs a version of 

Green’s Theorem for regions whose boundaries consist of several closed curves as 

in the examples illustrated below: 
 



 

 

 

(Sources:  http://en.wikipedia.org/wiki/Annulus_(mathematics) , 

http://math.fullerton.edu/mathews/c2003/cauchygoursat/CauchyGoursatMod/Images/mat0626.gif ) 
 

In these cases the double integral over D is equal to a weighted sum of line 

integrals over the boundary curves in ∂∂∂∂D.  The drawings suggest that the 

boundaries have one outer curve and one or more inner curves; it is possible to 

make this precise mathematically, but this requires graduate level mathematics.  

Given the assertions about inner and outer curves, the appropriate sum of line 

integrals is equal to the line integral of the outer curve in the counterclockwise 

sense minus the sum of the line integrals of the inner curves in the same sense 

(equivalently, plus the sum of the line integrals of the inner curves in the clockwise 

sense).  We shall not use this in exercises or exams, but there are places in 

mathematics and the sciences where it is useful to know this version of Green’s 

Theorem. 
 

Divergence form of Green’s Theorem.   An alternate formulation of Green’s 

Theorem is given in Theorem 6.2.3, which is stated, derived, and discussed on 

pages 384 – 385 of the course text.  In Chapter 7 we shall describe and work with 

3 – dimensional analogs of this and the usual versions of Green’s Theorem.   Since 



the ∇∇∇∇ (del or nabla) operator plays an important role throughout the rest of this 

course, for purposes of review we note that the directory 
 

http://math.ucr.edu/~res/math10A 
 

contains files with background information and web links involving the curl and 

divergence of a vector field as well as the gradient of a scalar valued function. 

 


