Comments on Colley, Section 6.3

The starting point is the following observation:

Suppose that I is a curve and the vector field F is the gradient of a function g.
Then the line integral of ¥ along T only depends upon the endpoints of T":

L Pdx + Qdy = g(v(b))- g(v(a))

This follows quickly from the Chain Rule for partial differentiation and the
Fundamental Theorem of Calculus. A derivation is given at the bottom of page
392 in the course text.
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Figure 13.3.1 Independence of path

(Source: http://www.math.wisc.edu/~keisler/chapter_13.pdf )

The integrals along all the paths are equal if (P, Q) is a gradient.

Both physicists and mathematicians were naturally led to consider the following
more general question: Under what conditions is the line integral of a vector
field independent of path? Some general observations about this concept appear
on pages 391 — 392 of the course text. By the preceding discussion, we know that
all gradient vector fields have path independent line integrals.

The equality of mixed second partials yields a simple condition which must hold if
a vector field is a gradient:
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In many cases this can be used to show that a vector field is not a gradient.
However, even if the condition
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1s satisfied, the vector field is not necessarily a gradient.

EXAMPLE. Suppose that P = —y/(x*+y?) and Q = x/(x* +y®). Then the
vector field F = (P, Q) satisfies the preceding identity. If F is a gradient then the
line integral over a closed curve will always be zero. However, if we take the line
integral of F over the unit circle with the usual counterclockwise parametrization
(cos ¢, sin t), where ¢ runs from 0 to 27, then direct calculation shows that the
value of this line integral is equal to 27 (verify this!).

The problem in this example is that the vector field is defined on a region which
has a “hole” at the origin. It turns out that if a region does not have any “holes”
then the condition on partial derivatives is enough to guarantee that the vector field
is a gradient (see Theorem 3.5 on pages 395 — 396). In many textbook problems,
the vector fields are defined on the entire plane, which satisfies the “no holes”
condition.

Here is an example from the course lectures:

Finding potential functions.  Find a function g such that Vg(z,y) = (2z+y, 2y+z).

SOLUTION. First of all, one can check that the vector field F in the problem
satisfies the criterion to be a gradient. It is defined on the entire plane (a rectangular
region), and we also have the identity
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The first step in finding g is to evaluate the antiderivative

/(23: + y)dz = 2% + 2y + h(y)

where the constant of integration is some function of y because we are integrating a function
of two variables with respect to one of them. To get some information on h(y), we need
to differentiate g with respect to y and compare it to the second coordinate of the vector
field. When we do this, here is what we obtain:



ad
T2y = d_y = z + h(y)

From this equation we find that h'(y) = 2y, so that h(y) = y? + C for some constant C.
Therefore the potential function g has the form g(z,y) = 22 + zy + y? + C, where C is
some undetermined constant. We can solve for C if we are given the value of g at a specific
point.

Gradient recognition in three dimensions. In this case the vector field F has three
coordinate functions that we shall call P. Q@ and R. IfF is a gradient, then one
obtains the following conditions on the partial derivatives as in the 2 — dimensional
case (using equality of mixed second partial derivatives):
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These conditions are equivalent to the vanishing of the curl of F: VX F = 0.
Conversely, for a suitable collection of simply connected regions in 3 — space,
which contains the entire coordinate 3 — space, and all regions obtained from the
latter by removing finitely many points, it turns out that F is the gradient of some
function g if and only if its curl is equal to zero. The course text includes a few
remarks to motivate this statement, but once again material from graduate level
courses is needed to formulate and prove everything precisely.

EXAMPLE. If F(x,y,z) = (yz,xz, xy), then the coordinate functions P, Q, R
satisfy the three equations above, so we know that F = Vg for some function g.
Since the partial derivative of the function g with respect to x is equal to yz, we
know that g(x,y,z) = xyz + a(y, z) for some function a. Since the partial
derivative of the latter with respect to y is equal to xz + a, (where a, denotes the
partial derivative with respect to y) and we know that the partial derivative of g is
equal to xz, it follows that a,(y,z) = 0 and hence a(y,z) = b(z) for some
function b. Similarly, since the partial derivative of xyz + b(z) with respect to z is
equal to xy + b’ and we know that the partial derivative of g is equal to xy, it
follows that b’(z) = 0 and hence b(z) is a constant C. Therefore we have shown
that g(x,y,z) = xyz + C for some constant C.




