
Comments on Colley, Section 6.3 
 

The starting point is the following observation: 
 

Suppose that ΓΓΓΓ is a curve and the vector field F is the gradient of a function g.  

Then the line integral of  F along  ΓΓΓΓ only depends upon the endpoints of  ΓΓΓΓ: 
 

 
 

This follows quickly from the Chain Rule for partial differentiation and the 

Fundamental Theorem of Calculus.  A derivation is given at the bottom of page 

392 in the course text.   
 

 
 

(Source: http://www.math.wisc.edu/~keisler/chapter_13.pdf ) 
 

The integrals along all the paths are equal if (P, Q) is a gradient. 
 

Both physicists and mathematicians were naturally led to consider the following 

more general question:  Under what conditions is the line integral of a vector 

field independent of path?   Some general observations about this concept appear 

on pages 391 – 392 of the course text.  By the preceding discussion, we know that 

all gradient vector fields have path independent line integrals. 
 

The equality of mixed second partials yields a simple condition which must hold if 

a vector field is a gradient:   
 
 

 
 



In many cases this can be used to show that a vector field is not a gradient.  

However, even if the condition  

 
 

is satisfied, the vector field is not necessarily a gradient. 
 

EXAMPLE.  Suppose that  P  =  – y/(x2
 + y

2
)  and  Q  =  x/(x2

 + y
2
).  Then the 

vector field F  =  (P, Q) satisfies the preceding identity.  If F is a gradient then the 

line integral over a closed curve will always be zero.  However, if we take the line 

integral of F over the unit circle with the usual counterclockwise parametrization  

(cos t, sin t), where  t  runs from 0 to 2ππππ, then direct calculation shows that the 

value of this line integral is equal to 2ππππ (verify this!).  
   

The problem in this example is that the vector field is defined on a region which 

has a “hole” at the origin.  It turns out that if a region does not have any “holes” 

then the condition on partial derivatives is enough to guarantee that the vector field 

is a gradient (see Theorem 3.5 on pages 395 – 396).  In many textbook problems, 

the vector fields are defined on the entire plane, which satisfies the “no holes” 

condition.    
 

Here is an example from the course lectures: 
 

 

 



 
 

Gradient recognition in three dimensions.  In this case the vector field F has three 

coordinate functions that we shall call  P.  Q  and  R.   If F is a gradient, then one 

obtains the following conditions on the partial derivatives as in the 2 – dimensional 

case (using equality of mixed second partial derivatives): 
 

 
 

These conditions are equivalent to the vanishing of the curl of F:   ∇∇∇∇ × F  =  0.  

Conversely, for a suitable collection of simply connected regions in 3 – space, 

which contains the entire coordinate 3 – space, and all regions obtained from the 

latter by removing finitely many points, it turns out that F is the gradient of some 

function  g  if and only if its curl is equal to zero.   The course text includes a few 

remarks to motivate this statement, but once again material from graduate level 

courses is needed to formulate and prove everything precisely.   

 

EXAMPLE.  If  F(x, y, z)  =  (yz, xz, xy), then the coordinate functions  P, Q, R 

satisfy the three equations above, so we know that F  =  ∇∇∇∇g for some function g.  

Since the partial derivative of the function g with respect to x is equal to yz, we 

know that  g(x, y, z)  =  xyz + a(y, z) for some function a.  Since the partial 

derivative of the latter with respect to y is equal to  xz + ay  (where ay denotes the 

partial derivative with respect to y) and we know that the partial derivative of g is 

equal to xz, it follows that  ay(y, z)  =  0  and hence a(y, z)  =  b(z)  for some 

function b.   Similarly, since the partial derivative of  xyz + b(z) with respect to z is 

equal to  xy + b′  and we know that the partial derivative of g is equal to xy, it 

follows that  b′(z)  =  0  and hence b(z)  is a constant C.  Therefore we have shown 

that g(x, y, z)  =  xyz + C  for some constant C.   

 

 


