Comments on Colley, Section 6.3

The starting point is the following observation:
Suppose that Γ is a curve and the vector field \mathbf{F} is the gradient of a function \boldsymbol{g}. Then the line integral of \mathbf{F} along Γ only depends upon the endpoints of Γ :

$$
\int_{\Gamma} P d x+Q d y=g(\gamma(b))-g(\gamma(a))
$$

This follows quickly from the Chain Rule for partial differentiation and the Fundamental Theorem of Calculus. A derivation is given at the bottom of page 392 in the course text.

Figure 13.3.1
Independence of path
(Source: http://www.math.wisc.edu/~keisler/chapter_13.pdf)
The integrals along all the paths are equal if $(\boldsymbol{P}, \boldsymbol{Q})$ is a gradient.
Both physicists and mathematicians were naturally led to consider the following more general question: Under what conditions is the line integral of a vector field independent of path? Some general observations about this concept appear on pages 391 - 392 of the course text. By the preceding discussion, we know that all gradient vector fields have path independent line integrals.

The equality of mixed second partials yields a simple condition which must hold if a vector field is a gradient:

$$
\frac{\partial P}{\partial y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial Q}{\partial x}
$$

In many cases this can be used to show that a vector field is not a gradient. However, even if the condition

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

is satisfied, the vector field is not necessarily a gradient.
EXAMPLE. Suppose that $P=-y /\left(x^{2}+y^{2}\right)$ and $Q=x /\left(x^{2}+y^{2}\right)$. Then the vector field $\mathbf{F}=(\boldsymbol{P}, \boldsymbol{Q})$ satisfies the preceding identity. If \mathbf{F} is a gradient then the line integral over a closed curve will always be zero. However, if we take the line integral of \mathbf{F} over the unit circle with the usual counterclockwise parametrization $(\cos t, \sin t)$, where t runs from 0 to 2π, then direct calculation shows that the value of this line integral is equal to 2π (verify this!).

The problem in this example is that the vector field is defined on a region which has a "hole" at the origin. It turns out that if a region does not have any "holes" then the condition on partial derivatives is enough to guarantee that the vector field is a gradient (see Theorem 3.5 on pages 395 - 396). In many textbook problems, the vector fields are defined on the entire plane, which satisfies the "no holes" condition.

Here is an example from the course lectures:
Finding potential functions. Find a function g such that $\nabla g(x, y)=(2 x+y, 2 y+x)$.
SOLUTION. First of all, one can check that the vector field \mathbf{F} in the problem satisfies the criterion to be a gradient. It is defined on the entire plane (a rectangular region), and we also have the identity

$$
\frac{\partial}{\partial x}(2 y+x)=1=\frac{\partial}{\partial y}(2 x+y) .
$$

The first step in finding g is to evaluate the antiderivative

$$
\int(2 x+y) d x=x^{2}+x y+h(y)
$$

where the constant of integration is some function of y because we are integrating a function of two variables with respect to one of them. To get some information on $h(y)$, we need to differentiate g with respect to y and compare it to the second coordinate of the vector field. When we do this, here is what we obtain:

$$
x+2 y=\frac{\partial g}{\partial y}=x+h^{\prime}(y)
$$

From this equation we find that $h^{\prime}(y)=2 y$, so that $h(y)=y^{2}+C$ for some constant C. Therefore the potential function g has the form $g(x, y)=x^{2}+x y+y^{2}+C$, where C is some undetermined constant. We can solve for C if we are given the value of g at a specific point.

Gradient recognition in three dimensions. In this case the vector field \mathbf{F} has three coordinate functions that we shall call $\boldsymbol{P} . \boldsymbol{Q}$ and \boldsymbol{R}. If \mathbf{F} is a gradient, then one obtains the following conditions on the partial derivatives as in the $\mathbf{2 -}$ dimensional case (using equality of mixed second partial derivatives):

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y} .
$$

These conditions are equivalent to the vanishing of the curl of $\mathbf{F}: \nabla \times \mathbf{F}=\mathbf{0}$. Conversely, for a suitable collection of simply connected regions in $\mathbf{3}-$ space, which contains the entire coordinate $\mathbf{3}$ - space, and all regions obtained from the latter by removing finitely many points, it turns out that \mathbf{F} is the gradient of some function g if and only if its curl is equal to zero. The course text includes a few remarks to motivate this statement, but once again material from graduate level courses is needed to formulate and prove everything precisely.

EXAMPLE. If $\mathrm{F}(x, y, z)=(y z, x z, x y)$, then the coordinate functions P, Q, R satisfy the three equations above, so we know that $\mathbf{F}=\nabla \boldsymbol{g}$ for some function g. Since the partial derivative of the function g with respect to x is equal to $y z$, we know that $g(x, y, z)=x y z+a(y, z)$ for some function a. Since the partial derivative of the latter with respect to \boldsymbol{y} is equal to $\boldsymbol{x z}+\boldsymbol{a}_{\boldsymbol{y}}$ (where $\boldsymbol{a}_{\boldsymbol{y}}$ denotes the partial derivative with respect to \boldsymbol{y}) and we know that the partial derivative of \boldsymbol{g} is equal to $x z$, it follows that $a_{y}(y, z)=0$ and hence $a(y, z)=\boldsymbol{b}(z)$ for some function \boldsymbol{b}. Similarly, since the partial derivative of $\boldsymbol{x y z}+\boldsymbol{b}(\boldsymbol{z})$ with respect to \boldsymbol{z} is equal to $\boldsymbol{x y}+\boldsymbol{b}^{\boldsymbol{\prime}}$ and we know that the partial derivative of \boldsymbol{g} is equal to $\boldsymbol{x y}$, it follows that $\boldsymbol{b}^{\prime}(z)=\mathbf{0}$ and hence $\boldsymbol{b}(z)$ is a constant \boldsymbol{C}. Therefore we have shown that $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y}, z)=\boldsymbol{x y z}+\boldsymbol{C}$ for some constant \boldsymbol{C}.

