
Comments on Colley, Section 7.1 
 

We defined curves in terms of parametrizations, and in principle we would like to 

define surfaces likewise.  However, there are some complications because we want 

to have a concept of surface which is broad enough to include most if not all the 

objects which are generally called surfaces in ordinary contexts.   
 

One simple way to define a parametrized surface in coordinate 3 – space is by 

means of a  3 – dimensional vector valued function X(u, v) of two variables.   
 

 
 

 

(Source: http://math.etsu.edu/MultiCalc/Chap5/Chap5-5/index.htm ) 
 

This definition includes the graphs of some function  f (u, v) of two variables, in 

which case the parametrization is given by  
 

X(u, v)   =   (u, v, f (u, v) ) 
 

and in order to define tangent planes we need to assume that  f  has continuous 

partial derivatives.  In order to avoid complicated discussions about defining 

partial derivatives at boundary points of regions, we also need to stipulate that the 

function  f  is defined on an open set as defined in the previous course.  More 

generally, the parametric equations for a smoothly parametrized surface are 

assumed to have the form 
 

X(u, v)   =   ( x(u, v), y(u, v), z(u, v) ) 
 

where, as before, the coordinate functions  x, y, z  are assumed to have continuous 

partial derivatives over some open set.  However, in order to obtain a decent notion 

of tangent plane we need an additional condition, just as we needed to assume the 

tangent vectors to parametrized curves were nonzero in order to define tangent 



lines.  The condition may be stated as follows:  Define the vector valued partial 

derivative functions  
 

       ,        . 

Not only do we want these two partial derivatives to be nonzero everywhere, but 

we also want them to be linearly independent everywhere, so that neither is a 

nonzero scalar multiple of the other.  This is conveniently summarized by the cross 

product condition  
 

 . 
 

This condition automatically holds for the graph of a function, in which case the 

cross product is given by ( – fu , – fv , 1) ; the reader should check this directly using 

the definitions of partial derivatives and cross products.  If we compare this with 

Theorem 2.3.3 on page 112 of the text, we see that this cross product is an upward 

normal vector to the tangent plane at a given point  p  =   (u0 , v0 , f (u0 , v0) ).  
Finally, for the sake of simplicity it is extremely useful to eliminate surfaces with 

self – intersections, so our default assumption will be that the parametrization is 

one – to – one:  Namely, the parametrization function  X  takes different points 

in its domain to distinct points in space. 
 

More generally, the tangent plane to a parametrized surface at some point  (u0, v0) 

is defined to be the plane through the surface point X(u0 , v0)  for which the 

standard normal vector  N(u0 , v0)  is equal to the cross product  
 

 . 
 

In other words, the equation of the tangent plane to X at p is given by the set of all 

vectors  w  satisfying the equation  N(u0 , v0) · (w – p)  =  0. 
 

Here are some basic examples beyond graphs of functions. 
 

Surfaces of revolution.  Suppose that we are given a curve which is the graph of a 

smooth (continuously differentiable) function  y  =  f (x), where  f  is always 

positive valued and (say)  0  ≤  a  <  x  <  b.   We can use such a curve to define 

surfaces of revolution about either the x – axis or the y – axis.   

 



 
 

Revolution about the  y – axis 
 

 (Source:  http://curvebank.calstatela.edu/arearev/arearev.htm ) 

 

 
 

Revolution about the  x – axis 
 

 (Source:  http://www.mathresources.com/products/mathresource/maa/surface_of_revolution.html ) 

 

Here is a link to an animated graphic: 
 

http://curvebank.calstatela.edu/arearev/rev3cont.gif 
 

In the first case (around the y – axis) the most straightforward paremetrization is 

given by  
 

X(u, v)   =   (u cos v,  f (u),  u sin v ) 
 

and in the second (around the x – axis) the most straightforward parametrization is 

given by  
 

X(u, v)   =   (u,  f (u) cos v,  f (u) sin v ). 
 

The coordinate functions satisfy the smoothness condition, and the cross products 

of the partials of X with respect to u and v are given by  
 

(1)   N(u, v)   =   (u f ′ (u) cos v ,  – u ,  u f ′ (u) sin v )  in the y – axis case, 

(2)   N(u, v)   =   ( f (u) f ′ (u) ,  – f (u) cos v ,  – f (u) sin v )  in the x – axis case. 



 

These formulas show that the lengths of the normal vectors are equal to u and  f (u) 

times the square root of  1 + f ′ (u) 
2
 respectively; in each case the length of the 

cross product is given as a product of two positive numbers and hence is positive. 
 

Examples of surfaces of revolution about the x – axis include a  sphere  of radius 1 

and center (1, 0, 0) with the poles on the x – axis removed, in which case the 

curves are given by y  =  SQRT(1 – (x – 1)
2) where 1  <  x  <  2,  right circular 

cylinders, in which case the curves are given by y  =  r  for some positive constant 

r  (and the x – limits are arbitrary nonnegative numbers), and right circular cones 

with the top vertices removed, in which case the curves are given by y  =  m x  for 

some positive constant m (and the x – limits are 0 and some positive value h).   
 

More generally, if ΓΓΓΓ is a parametrized regular smooth curve in the first quadrant of 

the coordinate plane, it is possible to extend the preceding constructions to obtain 

surfaces of revolution with respect to the x – and y – axes.   However, we shall 

pass on describing such generalizations explicitly and move to another crucial 

family of surfaces which arise naturally. 

 

Piecewise smooth surfaces 

 
There are still other examples beyond the smooth surfaces considered just far; just 

as it is often convenient to consider piecewise smooth curves, we also want to 

consider piecewise smooth surfaces in many situations.  One major complication is 

that it is definitely more difficult to put the pieces of such a surface together than it 

is to do the same thing for curves, and because of this we have to set up the 

definitions carefully. 
 

Recall that an elementary region is one which is bounded by a pair of vertical lines 

x  =  a, x  =  b, and the graphs of two functions  y  =  g(x),  y  =  h(x).  This concept 

figures in the definition of piecewise smooth surfaces which appears in Definition 

7.1.3 on page 413 of the course text.  Intuitively, one expects that a cube should be 

an example of a piecewise smooth surface, and a detailed verification of this point 

is given following the definition on pages 413 – 414 of the course text.  Here are 

some further pictures showing piecewise smooth surfaces such that each piece is a 

flat portion of some plane; in classical geometry these are called  polyhedra.  
 
 



      

 
(Sources:  http://cset.mnsu.edu/mathstat/images/polyhedron.gif 

http://whyfiles.org/coolimages/images/csi/cubes.jpg ) 

 

And here is an example of a “surface with holes” to illustrate the possibilities even 

further. 
 

 
 

(Source: http://www.georgehart.com/cccg/Image75.gif ) 
 

The concept of piecewise smooth surface is also useful because it allows one to 

include many smooth – looking examples, such as spheres, which are at best 



awkward to describe using single parametrizations.  In particular, the standard unit 

sphere with defining equation  x
2
 + y

2
 + z

2
  =  1  can be described using three 

parametrized pieces as follows:   
 

(1)  The upper third of the northern hemisphere above 60 degrees north latitude, 

defined by the parametrization   A(u, v)  =  ( u, v,  SQRT(1 –  u
2
 –  v

2
) ), 

where  u
2
  +  v

2
   ≤   1/4 .  

                                                 

(2)  The equatorial – temperate band of the sphere between 60 degrees north 

and south latitudes, defined by the spherical coordinate parametrization   

B(u, v)   =   ( cos u sin v, sin u sin v, cos v ), where  0   ≤    u    ≤    2ππππ        and 

– ππππ/3    ≤    v    ≤    ππππ/3 . 
 

(3) The lower third of the southern hemisphere below 60 degrees south latitude, 

defined by the parametrization   C(u, v)  =  ( u, v,  – SQRT(1 –  u
2
 –  v

2
) ), 

where  u
2
  +  v

2
   ≤   1/4 .  

 

 
 

(Adapted from  http://www.literacynet.org/sciencelincs/showcase/drifters/images/globe.jpg )  

 

Note that in each case the parametrization is actually definable on thickenings of 

the given domains; specifically, in the first and third cases the parametrizations can 

be extended to   u
2
  +  v

2
   <   1, and in the second case the parametrizations can be 

extended to all values of  u  and  v  such that     – ππππ/2  <  v  <  ππππ/2 . 
 

Strictly speaking, the second example probably should be split into two pieces, one 

over the eastern hemisphere (defined by the condition  y  ≥  0) and one over the 

western hemisphere  (defined by the condition  y  ≤  0), in order to ensure that the 

parametrization maps are one – to – one.   
 



One can proceed similarly with solids of revolution as described earlier; we shall 

assume that the continuously differentiable function f extends to a function with 

similar properties on an open interval containing the closed interval [a, b].  Then 

one can view the surface of revolution as being given by two parametrized pieces, 

one of which is the restriction of the standard parametrization to all  (u, v)  such 

that a  ≤  u  ≤  b  and  0  ≤  v  ≤  ππππ, and the other of which is the restriction of the 

standard parametrization to all  (u, v)  such that  a  ≤  u  ≤  b  and  ππππ  ≤  v  ≤  2ππππ.  

An illustration of this in the case of an ordinary circular cylinder is given below. 
 

 
 

As suggested by this picture, the surface of revolution may be viewed as a pair of 

identical pieces (one yellow, one blue) that are glued together along certain 

boundary curves.  In practice, we usually take a single parametrization such that 

0000  ≤  v  ≤  2ππππ     because such a parametrization is one – to – one almost everywhere. 

 

Surface area 
 

It is fairly straightforward to discuss arc length of curves and to derive integral 

formulas for arc lengths, and in many respects the theory of surface area can be 

viewed as a 2 – dimensional analog of the theory of arc length.   However, there 

are also some very important differences, and there are several phenomena that are 

at least somewhat surprising.   
 

We shall begin the discussion with surfaces which are graphs of scalar – valued 

functions  z  =   f (x, y)  of two variables, and in fact we shall begin with the 

simplest  possible functions, which are linear functions  z  =  a x  +  b y  +  c;  in 

such cases the graphs are simply planes, and thus we can analyze the situation 

using basic vector geometry 
 

CLAIM.   If we are given a small solid rectangular region  A in the xy – plane with 

length  L  and width W, and  B  is the piece of the plane which lies above  A, then 

it follows that  B  is a solid planar region bounded by a parallelogram, and it turns 

out that the area of  B  is equal to  L · W ·  SQRT(1 +  a
2
 +  b

2
).   

 



 
 

(Source for the drawing:  Widder, Advanced Calculus, p. 203) 

 

Why does this expression give the area?   The original rectangular region A is the 

set of all points for which  p  ≤  x  ≤  p + L  and  q  ≤  y  ≤  q + W for some p and q.  

The vertices of the parallelogram  B  are then given by the vectors 
 

(p, q, ap + bq + c),  (p + L, q, ap + aL + bq + c), 
 

(p, q + W, ap + bq + bW + c),  (p + L, q, ap + aL + bq + bW + c) 
 

and therefore two adjacent sides of the parallelogram B  correspond to the vectors 

U  =  L(1, 0, a)  and  V  =  W(0, 1, b).  Thus the area of the solid parallelogram  B  

is equal to the area of the parallelogram determined by the vectors  U  and  V. 
 

It turns out that this area is given by the length of the cross product U  ×  V.   More 

generally, if  a  and  b  are any two nonzero vectors in 3 – space such that one is 

not a scalar multiple of the other, then the area of the parallelogram determined by  

a  and  b  is equal to the length of the cross product  |a × b|        =        |a||b| sin θθθθ,   

where  θθθθ  is the angle between  a  and  b.  An illustration taken from  
 

http://stat.asu.edu/~eric/mat272/lect0403.pdf 
 

is given below, and the cited file also has additional information of the derivation 

of the area formula. 



 
 

Returning to the issue of computing the area bounded by the parallelogram  B, we 

may use the formula to conclude that this area is the length of U  ×  V, and direct 

calculuation implies that this length is equal to  L · W ·  SQRT(1 +  a
2
 +  b

2
).  For 

later reference, we note that the square root term is the length of the standard 

normal vector  N(x, y)  for the standard parametrization of the plane: 
 

X(x, y)   =   (x, y, a x  +  b y  +  c) 
 

(Recall that  N  is the cross product of the partial derivatives of  X with respect to 

the two variables.)  
 

Surface areas of more general graphs.   Suppose now that we are given a surface 

which is the graph of an arbitrary function  z  =   f (x, y)  with continuous partial 

derivatives; for the sake of simplicity, assume for the time being that the function 

is defined on a solid rectangular region whose lower left corner is (a, c) and whose 

upper right corner is (b, d).   Assume further that we have decomposed this region 

into smaller nonoverlapping rectangular regions in a standard grid pattern like the 

following drawing. 
 



 
 

If we take a fine enough grid, then for each small rectangle  A  it is reasonable to 

expect that the area of the piece of the graph over  A  is approximately equal to the 

area of a piece of some tangent plane over  A, as in the picture below. 
 

 
 

(Source: http://www.ltcconline.net/greenl/courses/202/multipleIntegration/surfaceArea.htm) 

 

More precisely, choose some point  (pA, qA)  in  A,  and let  TA be the tangent plane 

to the graph at (pA, qA, f (pA, qA));  then the approximate value we want is the area 

of the portion of TA which lies over  A, and by the preceding discussion this area is 

equal to    
 

SQRT (1 +  f1st(pA, qA)
2
 +  f2nd(pA, qA)

2) · ∆∆∆∆xA · ∆∆∆∆yA 



 

where  f1st and  f2nd  denote the partial derivatives with respect to the first and 

second variables.   
 

The total estimate for the surface area will be the sum of all such terms with  A  

running through all the small squares in the grid.  As usual, if we take finer and 

finer grids, we expect to get better and better approximations to the surface area, 

and we also expect that the actual surface area should be a limit of such 

approximations.  This turns out to be the case, but we shall not try to prove it here 

(the most efficient approach requires some fairly sophisticated tools which are 

beyond the scope of this course).   In fact, we can also carry out a similar analysis 

if the function is defined on some “reasonable” set D of the usual type(s), and the 

result is the following standard surface area formula: 
 

 
It is usually worthwhile to check that new, general formulas yield the answers one 

has already obtained in special cases.  By construction, this is true if the function is 

linear.   Suppose next that we have a cylindrical surface for which the function  f 

can be rewritten as a function  g( x ), so that its value depends only upon the first 

variable and not the second. 
 

 
 

In this case the partial derivative of  f  with respect to the second variable is zero, 

and if the region  D  is rectangular, and if the lower left and upper right corners 

then the formula implies that the surface area equal to the product  L (d – c), where  

L  is the length of the graph curve defined by  z  =  g( x ) on the plane  y  =  c.   This 

formula is consistent with physical experiments in which one takes a sheet of paper 

(or metal) and bends it into a cylindrical surface.  Finally, if we are given a surface 

of revolution obtained by revolving the graph of some function  z  =  g( x ) around 

the  z – axis, then the surface of revolution is the graph of  z  =  g( x
2
 +  y

2
 ).  In this 

case the surface area formula yields a double integral over the ring (or annulus) 



shaped region  a  ≤  x
2
 +  y

2
  ≤  b ;  if we compute the partial derivatives of  z with 

respect to x and y, and then convert the integral to polar coordinates, the result will 

be the usual integral formula for computing surface areas by the shell method from 

single variable calculus (verify this!).  Near the end of this document we shall give 

a second argument to show that our formula for surface area yields the same 

answer as the one from single variable calculus for surfaces of revolution about the 

y – axis. 

 

Comparison with the arc length definition.  In the usual definition of arc length, 

one approximates a curve by broken lines which are inscribed in the curve.   
 

 
 

(Source:  http://en.wikipedia.org/wiki/Arc_length ) 
 

As noted on page 204 of Widder, Advanced Calculus, this definition of surface 

area “may be unexpected.  It might seem more natural to consider the area as a 

limit of areas of inscribed polyhedral.”  However, the subsequent discussion in 

Widder explains why such an approach does not work; specifically, “the … limit 

need not exist, even for very simple surfaces.”    The 1 – dimensional analog of this 

standard approach to surface area does not involve approximating small pieces of 

the curve by secant lines joining a pairs of nearby points on the curve, but rather by 

taking the lengths of small pieces of tangent lines.  In several respects the approach 

generalizes the approximation to the circumference of a circle by means of 

circumscribed polygons. 
 

 
 

More generally, if one considers approximations to curves by means of pieces of 

tangent lines, then it turns out that the approximations become better as one refines 

the decomposition of the interval on which the parametrization is defined, and a 



suitably defined limit is equal to the same integral formula obtained for the arc 

length using inscribed broken line approximations.  

 

Surface areas for general parametrizations.  Pages 414 – 416 of the course text 

discusses surface areas for parametrizations in the general case, for which 
 

X(u, v)   =   ( x(u, v), y(u, v), z(u, v) ) 
 

where the coordinate functions have sufficiently many continuous partial 

derivatives and the cross product of the partial derivative vectors    
 

N(u, v)   =   X1st(u, v) × X2nd(u, v) 
 

is nonzero (X1st and X2nd denote partial derivatives with respect to the appropriate 

variables).   One standard version of the area formula is given by 
 

 
 

and another extremely useful version of the area formula is stated as item (8) on 

page 416 in terms of Jacobians.  Specifically, since the integrand is given by 
 

 
 

it follows that one can express the integrand in the following form: 
 

 
 
Interpretation for surfaces of revolution.   Single variable calculus courses often 

give formulas for the surface areas of surfaces of revolution, so we should really 

check that our surface area reduces to the previously known ones in such cases.  

For surfaces of revolution with respect to the y – axis, a previously derived formula 

shows that the integrand |N(u, v)| is equal to  u ·  SQRT(1 +  f ′ (u)
2
).  Since the 

parametrization is defined for  u  between  a  and  b  and  v  between  0  and 2ππππ, it 

follows that the surface area is equal to  
 

 
 



Likewise, for surfaces of revolution with respect to the x – axis, the corresponding 

formula shows that the integrand |N(u, v)| is equal to   f (u) ·  SQRT(1 +  f ′ (u)
2
) ;  

the parametrization is again defined for  u  between  a  and  b  and  v  between  0  

and 2ππππ, so in this case the surface area is equal to 
 

 
 

In each case, the expression on the right hand side equals the surface area formula 

from single variable calculus.  

 

Final remarks 
 

Extension to piecewise smooth surfaces.   Suppose now that we are given a 

piecewise smooth surface, with smooth parametrizations defined over (open sets 

containing) the regular regions  D1,  D2,  …  ,  Dk .  In such cases the total surface 

area is given by the sum of the surface areas of the smooth pieces.   
 

 
 

This formula is probably not surprising, but it is included for the sake of 

completeness. 

 
Independence of parametrizations.  By construction, all surface area formulas 

depend upon choosing parametrizations.  It is possible to show that the values 

obtained for surface areas do not depend upon choices of parametrizations, but this 

requires concepts beyond the scope of this course. 

 

Level surfaces.   The unit sphere is a special case of a bounded nonsingular level 

surface in 3 – space, which is the set  S  of all  (x, y, z)  such that  f (x, y, z)  =  0 

for some function  f  with continuous partial derivatives such that  S  is bounded (it 

lies inside some large disk or cube) and the following nonsingularity condition is 

satisfied:  
 

For all points  (x, y, z)  in  S, the gradient  ∇∇∇∇ f (x, y, z)  is nonzero. 
 

One can check directly that these conditions apply to the sphere defined by the 

equation   x
2
 + y

2
 + z

2
 – 1  =  0.   More generally, every bounded nonsingular level 

surface in 3 – space admits a decomposition into a piecewise smooth surface.  

However, a rigorous proof of this fact requires graduate level mathematics. 


