
Comments on Colley, Section 7.2 
 

The next step is not particularly surprising.  Having defined surfaces, we now want 

to discuss integration over them.  There are obvious analogies with the previous 

chapter on line integrals, and just as line integrals can be computed using ordinary 

integrals, in a similar manner we can compute surface integrals using double 

integrals.  However, as before there are complications when we pass from one 

dimension to two, and some of these are substantial.  
 

As noted in the text, there are two types of surface integrals, one for scalar valued 

functions defined near a surface and another for vector fields defined near a 

surface.  Likewise, as in the case of line integrals it is often necessary to know that 

the value of a line integral does not change if we take two parametrizations of the 

same surface; a partial explanation of this fact is given in Theorems 7.2.4 and 7.2.5 

on pages 426 – 428 of the course text.   
 

Surface integrals for scalar valued functions are very similar to line integrals for 

scalar valued functions.  In each case, a simple physical model is the problem of 

computing the mass of an object with variable density (for line integrals the object 

is a thin wire represented mathematically by a parametrized curve, for surface 

integrals it is a thin shell represented mathematically by a parametrized surface). 

 

As in the case of line integrals, surface integrals of vector fields are the more 

important ones for scientific applications.   However, the definitions of such 

surface integrals differ greatly from their line integral counterparts, and in fact they 

have much different physical interpretations.  

 

Flux integrals  

 
The physical idea behind line integrals of vector fields is based upon the concept of 

energy (or work).  In contrast, the physical idea behind surface integrals of 

vector fields is based upon the concept of flux which we shall now describe.   

 

One of the simplest physical models involves fluid flowing through a porous 

surface at some given time.  We can model the flow of the fluid at that time by a 

vector field; the value of the vector field at a point will represent the velocity of the 

fluid flow at that point.  For example, if the vector field F(x, y) has the constant 

value (– 3/2, 3/2), then the fluid flow is in the northwest direction everywhere at a 

constant rate of speed, which is given by |F|  =  (3/2) · SQRT(2).     

 



 
 

(Source:  http://people.math.gatech.edu/~carlen/2507/notes/vectorCalc/vectorfields/vf.gif ) 

 

Likewise, if we take the 2 – dimensional vector field  
 

 
 

which is defined at all points except the origin, then at each point the fluid is 

flowing at a unit speed towards the origin in a straight line (“the fluid is going 

down the drain”). 
 

 

 

 (Source: http://www.math.uic.edu/~math210/newlabs/lab7/images/lab7-11.gif ) 

 



In each of these examples the lengths of the vectors are the same everywhere, but 

certainly one can also give examples where the length is variable.  For instance, in 

the second case one could simply take the vector field (– x, – y); with this change, 

the speed at a point is equal to the distance between the point and the origin.  

Obviously, it is also possible to give many similar 3 – dimensional examples. 

 

Suppose now there is a porous surface (for the 3 – dimensional case) or curve (for 

the 2 – dimensional case) which lies inside the region where the fluid is situated.  

One frequently arising issue is to determine the rate at which the fluid is flowing 

past the surface or curve; this rate is called the flux of the fluid through the surface 

or curve. 
 

 
 

(Source:  http://www.math.utah.edu/~erin/22101/flux.pdf ) 

 

In any discussion of flux it is absolutely necessary to pay some attention to senses 

and orientations.  More precisely, we need to specify a preferred sense (or 

orientation) for the normal direction to the surface or curve in order to have 

meaningful notions of the fluid moving into and out of the surface or curve.  In the 

preceding illustration, the orientation sense points to the right; another option 

would be the sense pointing in the exact opposite direction. 
 

As in other discussions of applications, it is best to begin with simple cases.  

Suppose we start with a flat surface and a fluid for which the velocity at all points 

is constant (in both speed and direction).   

 
 (Source:  http://upload.wikimedia.org/wikipedia/commons/7/72/Flux_diagram.png ) 

 



As the illustration suggests, the flux through the flat surface depends upon the 

angle between the surface and the vector field; if the normal vector to the surface 

points in the same direction as the vector field, then the flux is given by the length 

of the vector field, if there is some acute angle between these vectors then the flux 

is some percentage of the length, and if the vector field is perpendicular to the 

normal vector then nothing is flowing past the surface at that point, so the flux is 

zero.  For obtuse angles one gets a flux which is negative (physically, an inward 

rather than an outward flow), and if the normal vector points in the opposite 

direction to the vector field, then the flux is the negative of the length of the vector 

field.  If we examine things more closely, we obtain the following simple but 

important formula, in which n is the preferred normal direction vector for the 

surface and v is the (constant) value of the vector field: 
 

Flux over a flat surface   =   (n · v) · (Area of surface) 

 

Suppose now that we have a smooth parametrized surface whose parametrization is 

one – to – one everywhere (almost everywhere will not suffice!), and for the sake 

of convenience assume that the preferred direction of the normal vector is given by 

N(u, v) everywhere (if the domain is connected in the sense that any two points can 

be joined by a broken line which lies entirely in the domain, then the only other 

option would be given by the negative of the standard normal vector  —  in other 

words, the opposite orientation).  Then we can use the previous ideas of splitting 

the domain into small rectangles, estimating the flux over the surface pieces which 

correspond to the individual rectangles, adding these together, noticing that the 

approximations get better if we take smaller rectangles, and observing that the limit 

of these, which is a surface integral, should be the flux across the oriented surface 

(at the last step there is the usual issue of making sure that a limit exists, which 

requires input from more advanced courses).   This leads to the following surface 

integral formula for the flux over a surface S:  
 

 
 

Note that if we choose the opposite orientation, then the value of the flux changes 

sign.  Frequently the flux integral for a vector field over an oriented surface is 

written (a little) more compactly as follows: 
 

 
 



Formally, we may think of   d S  as equal to N dS.  One advantage of this notation 

is that it is much easier to apply when working specific problems. 

 

Flux integrals for curves.  At the beginning of the discussion of flux, we 

mentioned that there was a 2 – dimensional version of this concept involving flux 

through curves rather than surfaces, so we shall now discuss the adaptations 

needed in order to discuss the planar version of the theory.  The main thing we 

need will be a concept of normal vector to a regular curve.  We shall define the 

standard oriented normal direction to a parametrized curve γγγγ( t )  =  ( x( t ), y( t ) ) by 

the formula  N( t )  =  ( y′( t ), – x′( t ) ).  It follows immediately from the definition 

that N( t ) is perpendicular to the tangent vector γγγγ′( t ); we have chosen the sign so 

that if γγγγ is moving in a counterclockwise direction then N is pointing away from 

the origin.  For example, if γγγγ( t ) is the usual counterclockwise circle  ( cos  t, sin  t ), 

then γγγγ′( t ) is ( – sin  t, cos  t ),  and  N( t )  =  ( cos  t, sin  t ). 
 

 
If we analyze the flux in this setting as we did in the 3 – dimensional case, it will 

follow that the flux of a planar vector field F  =  (P, Q) with respect to a curve ΓΓΓΓ     

is equal to the following line integral: 
 

 
 

Equivalently, the flux is the line integral of the scalar function (F · N) which is the 

analog of the function which appears in the 3 – dimensional case. 

 

Computing flux integrals for surfaces.   Here is yet another way of writing the 

flux integral for a vector field F  =  (P, Q, R): 
 

 



 

It is extremely important to note the ordering of the differential expressions dx, 

dy, and dz in this integrand, for if the wrong orderings are used in a computation 

then the result will almost inevitably be incorrect.   This expression is very useful 

because it reflects the following formula for computing a flux integral for the 

oriented parametrized surface in terms of a double integral over the domain D on 

which the parametrization is defined: 
 

 
 

The importance of paying careful attention to the order of differentials is apparent 

from this formula, for if the ordering of two variables is switched in any of the 

Jacobians, then the corresponding summands will change sign. 

 

Piecing together orientations.   In the preceding discussion we assumed that our 

surfaces were smoothly parametrized and simply took the standard orientation 

given by the cross product of the partial derivatives.  However, if we have 

something like a piecewise smooth surface, where each piece has a separate 

parametrization, then more care is needed in choosing normal directions.   
 

Textbook exercise 5 for Section 7.1 is a good example to consider.  This surface 

was given by the six faces of the boundary for the cube  – 2  ≤   x, y, z  ≤  2, and we 

gave the following parametrizations for the six faces of the cube: 
 

(– 2, u, v)    (2, u, v)    (u, – 2, v)    (u, 2, v)    (u, v, – 2)    (u, v, 2) 
 

If we take the cross products of the partial derivatives for each parametrization, we 

find that the standard normal directions point towards the inside of the cube in the 

first, third and fifth cases, and they point towards the outside in the other three 

cases.  Generally when we are working with something like a cube we want to 

choose orientations so that the normal is always pointed towards the outside, as in 

the following illustration   
 

 
 

(Source:  http://www.math.rutgers.edu/~greenfie/mill_courses/math251/diary4.html ) 



This forces an important modification to the formulas for surface integrals.  Instead 

of simply taking the normal to be the usual  N(u, v)   =   X1st(u, v) × X2nd(u, v), we 

need a global system of orientations ΩΩΩΩ(u, v) which somehow can be fit together 

coherently.  In the case of a closed bounded surface like a sphere or cylinder 

boundary or cube boundary, it is always possible to do this using outward pointing 

normals, and in such cases we can take ΩΩΩΩ(u, v) over a given piece to be plus or 

minus the usual  N(u, v).  Of course, one must look very carefully at the 

parametrizations over the individual pieces when choosing the global system of 

orientations (see the criterion below).    The spherical and cylindrical cases are 

illustrated below.     
 

                
 

(Sources:  http://www.math.rutgers.edu/~greenfie/mill_courses/math251/diary4.html , 

http://www.math.umn.edu/~nykamp/m2374/readings/surfintex/surfintex13x.png ) 
 

On the other hand, if the surface has one or more boundary curves, then it is not 

always possible to choose reasonably coherent orientation systems.  The basic 

example of this sort is given by the Möbius strip, which is formed by taking a 

strip of paper and gluing two of the ends together as indicated below:   
 

                         
 

(Sources:  http://mathworld.wolfram.com/MoebiusStrip.html , 

http://virtualmathmuseum.org/Surface/moebius_strip/moebius_strip.html ) 

 

 



This surface has the curious property that, if you travel along the closed path of the 

center curve, then at the end you will be upside down from your original position.  

The following artwork by M. C. Escher illustrates this phenomenon: 
 

 
 

(Source:  http://richardwiseman.files.wordpress.com/2009/03/escher-mobius_strip_ii.jpg ) 

 

Here is an animated (and less creepy!) illustration of the same point: 
 

http://www.vidoemo.com/yvideo.php?i=TDQ4UkJzcWuRpeFAyQjQ&mathematica-mbius-strip-traversal= 
 

This means that there is a closed smooth path on the surface for which one cannot 

choose a unique, continuously varying normal direction to the surface, and hence 

there is no reasonable choice for a preferred normal direction to the Möbius 



strip, and consequently we cannot discuss flux integrals for such a surface.  

Fortunately, such nonorientable surfaces very rarely arise in the applications of 

vector calculus to physics and engineering, and in particular this never happens for 

closed surfaces like the ones mentioned previously.  

 
How can we recognize coherent global systems of orientations? 

 
There is no simple answer to this question, but we shall try to explain one key 

aspect.  By definition, a piecewise smooth surface is formed from finitely many 

parametrized surfaces defined over the sorts of regular domains for which one can 

compute double integrals using iterated ordinary integrals; in other words, they are 

defined by inequalities of the form  a ≤ u ≤  b  and  g(u) ≤ v ≤  h(u).   Suppose 

we are given an arbitrary orientation system  ΩΩΩΩ    over the pieces; then it is possible 

to choose the parametrizations Xj such that the orientations obtained from the 

parametrization always match W, for if one does not, then one can replace it by the 

new parametriation Xj (u, – v), which is defined on the set of points satisfying the 

inequalities  a ≤ u ≤  b  and  – h(u)  ≤ v ≤  – g(u).   By construction, the 

boundary of each piece defines a simple closed curve ΓΓΓΓj .  If a surface has a 

nonempty boundary, then the boundary of the entire surface is made up of the 

smooth pieces which come from at least some of these curves ΓΓΓΓj , but usually most 

of the smooth pieces do not lie on the boundary. 
 

With these conventions, we can state the basic criterion for orientability which is 

important for vector calculus. 

 

CRITERION.  A system of global orientations is coherent if and only if the sum of 

the line integrals over the curves ΓΓΓΓj  is equal to the sum of the line integrals of the 

boundary curves for the surface. 
 

For example, if we take the cube as before, then it has no boundary curves, and in 

fact if we choose parametrizations as above so that the normals always point out 

word, then the sum of the line integrals on the boundaries of the separate pieces 

will add up to zero for this system of orientations.   The computation is fairly 

straightforward but somewhat messy, so we shall not give the details.  Similarly, 

outward normals yield coherent orientation systems for the sphere and cylinder. 
 

On the other hand, suppose we try to do this with the Möbius strip.  In the drawing 

below we have decomposed this surface into three well – behaved smooth pieces 

on which one has separate one – to – one parametrizations.. 
 



 
 

There are two ways of orienting each of the three smooth pieces, and these yield a 

total of 8 global orientation systems.  These orientations correspond to choosing 

the clockwise or counterclockwise senses for the boundary curves of the three 

pieces.   
 

A coherent choice of orientations would be one for which the sum of these line 

would reduce to the line integral for the boundary curve, which is represented by 

the pair of colored red in the drawing.   However, none of the 8 global orientation 

systems have this property; in fact, for each choice the sum turns out to involve 2 

times the line integral of at least one vertical curve in the drawing (note that the 

curves in the left and right are the same, with the senses identified as indicated by 

the arrows). 


