
Comments on Colley, Section 7.3 
 

This section describes two 3 – dimensional generalizations of Green’s Theorem.  

One of them (Stokes’ Theorem) extends the usual form of Green’s Theorem 

involving the integral of  F · ds, and the other (sometimes also called Green’s 

Theorem, but more often called the Divergence Theorem or Gauss’s Theorem or 

the Gauss – Ostrogradsky Theorem) extends the divergence form of Green’s 

Theorem involving the integral of F · d N. 

 
BACKGROUND REFERENCES.   The divergence and curl of a vector field 

were defined and studied in Section 3.4 of the text; the latter section was covered 

in the first course of the multivariable calculus sequence (Mathematics 10A).  The 

following document contains some additional information and online references: 
 

http://math.ucr.edu/~res/math10A/weblinks3.pdf 

 
Up to this point in the course, most of the emphasis has been upon the basic 

definitions of key concepts (various sorts of integrals, “nice” regions in the 

coordinate plane and 3 – space, potential functions, surface area, flux of a vector 

field, … )  and methods for computing various integrals and functions, including 

statements of several fundamentally important theorems like the Change of 

Variables Rule and Green’s Theorem.  While these points are also central to the 

remaining sections of the course, there will also be an additional factor:   We shall 

also focus on the logical derivations of some important formulas that play crucial 

roles in the applications of vector analysis to the sciences and engineering. 

 

Stokes’ Theorem 
 
This is result which contains the previously stated Green’s Theorem (involving the 

line integral of  F · ds over a closed curve  ΓΓΓΓ, or a collection of closed curves, 

bounding a region D) as a special case.   The main difference is that the region  D 

is replaced by a coherently oriented surface  S.   There is a discussion of coherent 

orientations at the end of the commentary for the previous section:  
 

http://math.ucr.edu/~res/math10B/comments0702.pdf 

 

The underlying ideas regarding coherent orientations are summarized in the 

following drawings.  The first two pictures illustrate the relationship between the 

direction sense of  ΓΓΓΓ    and the orientation of  S, while the third illustrates how 

orientations fit together for the parametrized pieces of a piecewise smooth surface. 



 

 
 

(Source: http://www.ittc.ku.edu/~jstiles/220/handouts/Stokes%20Theorem_1.png) 
 

 

 
 

(Source: http://en.wikipedia.org/wiki/File:Stokes%27_Theorem.svg) 

 



 
 

(Source: http://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Stokes.png/250px-Stokes.png) 
 

The third picture reflects the basic principle in the previously cited commentary for 

Section 7.2 of the text; namely, if one has a coherent orientation for  S  then the 

sums of the line integrals over the pieces of  S  will reduce to the line integral over 

the boundary curve(s). 

 

Yet another way of describing the relation between the orientation of  S  and the 

direction sense of the boundary curve  ΓΓΓΓ    is the following Right Hand Rule:   If 

you right hand curls around the normal vector N in the directed sense of ΓΓΓΓ, then 

your thumb will be pointing in the direction of N.   
 

 

 

With the preceding conventions, we may state Stokes’ Theorem as follows: 
 

Let  S  be an oriented surface with unit coherent normal vector system  

N,  and let  ΓΓΓΓ     be the positively oriented boundary of  S.  If F is a vector 

field with continuous first order partial derivatives which is defined in a 

region containing S, then we have the following identity: 

 

 
 



Frequently one sees the displayed equation in an equivalent form using notational 

conventions such as the ∇∇∇∇ operator; here is a typical example: 

  

 
 

There are also versions of Stokes’ Theorem for oriented surfaces whose boundaries 

consist of several curves; in these cases, the right hand side is replaced by a sum of 

line integrals over the various boundary curves, where each has the sense it inherits 

from the coherent orientation system for the surface. 
 

On the other hand, Stokes’ Theorem does not apply to the Möbius strip discussed 

in the commentary for Section 7.2; as indicated there, the sum of the line integrals 

over the parametrized pieces is never equal to the line integral along the boundary. 

No matter which orientation system one chooses for the parametrized pieces of the 

Möbius strip, the sum of the line integrals will always contain an extra term given 

by twice a line integral over a curve which is not contained in the boundary of the 

surface. 

 

A computational example.   This is taken from the following online source:  
 

http://ltcconline.net/greenl/courses/202/vectorIntegration/stokesTheorem.htm 
 

Let  S  be the part of the plane  z  =  4 – x – 2y    in the first octant, with upwardly 

pointing unit normal vector.  Use Stokes' theorem to find  

 
 

where   F(x, y, z)  =  (y, z,– xy). 
 

 
 

 



SOLUTION.    We first notice that, without Stokes’ theorem, it would be 

necessary to parametrize three different line segments.  Instead, we can evaluate 

the line integral by means of just one double integral.  The first step is to find a 

suitable parametrization for the solid triangle, including the domain on which this 

parametrization is defined.  The graph parametrization  (x, y, 4 – x – 2y) will be 

fine for our purposes, and its domain of definition is the “shadow” that  S  casts 

upon the xy – plane, which is just the region in the first quadrant bounded by the 

coordinate axes and the line x + 2y  =  4.  We then have 

 

 
and   N  =   i + 2j + k, so that Curl F · N   =  1 + x + 2y - 1  =  x + 2y.  Therefore 

the line integral in the problem is given by  
 

 
 

and from this one sees that the value of the integral is 32/3. 

 
More conceptual implications of Stokes’ Theorem 

 
On a theoretical level¸ one important consequence of Stokes’ Theorem is its role in 

proving a fundamental result from Theorem 6.3; namely, a vector field  F  over a 

simply connected region  ΩΩΩΩ  in 3 – dimensional space is expressible the gradient  

∇∇∇∇g  of some function  g  on  ΩΩΩΩ  if and only if  ∇∇∇∇ × F  =  0.  Here is a brief sketch of 

how one derives this fact.  Let  p  be some fixed point in  ΩΩΩΩ, for each  x  in the 

region pick some simple piecewise smooth path   ΓΓΓΓ     joining  p  to  x, and set  g( x )    

equal to the line integral of F  over ΓΓΓΓ.  .  .  .  In order to justify this definition, one needs 

to check that it does not depend upon the choice of smooth path; this turns out to 

be a consequence of the simple connectivity hypothesis, the vanishing of the curl, 

and Stokes’ Theorem.   Given this, one can verify that ∇∇∇∇g   =  F     fairly directly.   

 

On a physical level, Stokes’ Theorem is related to the concept of fluid circulation 

(see page 425 of the text). 

 



On a qualitative computational level, Stokes’ Theorem is useful because it often 

allows a priori evaluation of integrals without doing explicit quantitative 

computations. 

   

 Example.   Suppose that  S  is the boundary of the cube defined by the inequalities 

– 1   ≤  x,  y, z   ≤  1, and assume that  F  is a vector field defined near  S.  Prove 

that   
 

 

 
SOLUTION.    The surface integral is a sum of the surface integrals over the six 

flat pieces (as in the commentary for Section 7.2). 
 

 

 

 

(Source:  http://rationalwiki.com/wiki/images/2/20/400px-Necker_cube.svg.png ) 
 

By Stokes’ Theorem, the integral of  ∇∇∇∇ × F  over each piece of  S  is equal to the 

line integral of  F  over the boundary of that piece, and of course the total surface 

integral is equal to the sum of the integrals over the six pieces, so the surface 

integral over  S  is equal to a sum of line integrals over the six pieces.  We now 

need to examine the contributions of the individual surface pieces to that sum of 

line integrals. 
 



 
 

Same cube as before, with arrows indicating the senses 

of some line integrals over edges 

 

The sense of the boundary curve for the front face of the cube (mathematically, the 

face defined by  y  =  – 1) is indicated by the red arrows, and the senses of the four 

adjacent faces are indicated by the arrows in contrasting colors.  Notice that each 

piece of a boundary curve marked with a red arrow corresponds to another curve 

which has the opposite sense and is marked with an arrow of a different color.  

This means that if one sums up the line integrals over all the boundary pieces of 

the surface  S, then the net result will not contain any terms involving the boundary 

curves over the front face.  By the symmetry of the cube, the same is true for every 

other face, and therefore the sum of the line integrals of the boundary curves for all 

six faces will be equal to zero. 
 

This is just a special case of a more general phenomenon.  If we have an oriented 

surface with no boundary curves given in terms of pieces, then for a coherent 

system of orientations the sums of the line integrals for all the properly sensed 

boundary curves will be equal to zero.  In particular, this also applies to objects 

like cylinders (whose pieces are the tops, bottoms, and lateral faces) or spheres.  

Thus the vanishing result for cube surfaces also holds for an arbitrary surface with 

no boundary curves. 
 

Note that the vector field need not be defined over the entire solid cube which is 

bounded by  S; for example, this formula applies to the “inverse square” vector 

field sending a vector  v  =  (x, y, z)  to  |v|
– 3

 v  (same direction as  v, but the 

length is equal to |v|
– 2

 ). 

 
Derivation of Stokes’ Theorem 

 
Like the proof of Green’s Theorem in its most general form, there are several 

steps.  The first is to verify the result for a “nice” smooth parametrization  X  over 

a regular closed region defined by the usual sorts of inequalities a ≤ x ≤  b and  



g(x)  ≤ y ≤  h(x).   This turns out to be a direct consequence of the “easy special 

case” of Green’s Theorem for such regions combined with the definitions of line 

and flux integrals.  The second step is to view a general surface as a union of 

pieces to which the first step applies.   Then we know that the total surface integral 

is equal to the sum of the surface integrals over the pieces, so by the special cases 

it is equal to a sum of line integrals over the boundary curves for these pieces.  But 

the orientability condition implies that the sum of the line integrals over all the 

boundary curves for the pieces is just the line integral over the boundary of the 

whole surface (if the boundary consists of several closed curves, then one must 

take the sum of the line integrals over all the boundary curves).  Therefore the line 

integral of  F  over the boundary curve (or the sum of these curves) is equal to the 

surface integral for the curl of  F  over the entire surface.  Some further 

information and additional details appear on pages 448 – 451 of the course text. 
 

 

 

The Divergence Theorem 
 
The second generalization of Green’s Theorem to 3 – dimensional space, often 

known as the Divergence Theorem, is an analog of the Green’s Theorem identity 

for flux integrals (line integral of flux equals double integral of the divergence over 

the region bounded by the curve or curves).   
 

Let  V  be a region in coordinate 3 – space which lies inside some large 

cube, and assume that the boundary of  V is a piecewise smooth surface  

S (which, by previous comments, has a coherent orientation system  N), 

and take the outward pointing orientation of S.   Assume further that F 

is a vector field with continuous first order partial derivatives which is 

defined in a region containing V.   Then we have the following identity: 

 

 
 

A similar conclusion holds if the boundary S consists of finitely many surfaces.  

Note that these boundary surfaces are closed; in other words, none of them have 

any boundary curves.   

 



This result is closely related to the physical interpretation of the divergence which 

is mentioned in Chapter 3 of the text:  Namely, if  F is the velocity vector field for 

fluid motion in some region at a specific time, then the value of the divergence 

function ∇∇∇∇ · F(p)  at some point  p measures the extent to which the fluid is 

expanding or contracting at  p.  If one thinks of the fluid as the atmosphere, then 

the divergence of  F indicates whether the barometric pressure is rising (negative 

divergence) or falling (positive divergence) by Boyle’s Law (the pressure and 

volume of a gas are inversely proportional to each other if the temperature is held 

constant).  

 

A computational example.   This is taken from the following online source:  
 

http://en.wikipedia.org/wiki/Divergence_theorem 

 
Find the flux of the vector field  F(x, y, z)  =  (2x, y 

2
, z 

2
)  over the unit sphere with 

the outward normal orientation. 

 

SOLUTION.    Direct computation of this integral is turns out to be fairly difficult, 

but we can evaluate the surface integral fairly easily by means of the Divergence 

Theorem because the vector field is defined on the unit disk  W  whose boundary is 

the sphere S.   If we apply this theorem, we obtain the following: 
 

 
 

Since the functions  y and  z are odd functions on the surface S  —  in other words, 

they satisfy  F(– x, – y, – z)  =  – F(x, y, z)  for all  (x, y, z)  —  and the surface S is 

symmetric with respect to the antipodal map sending  (x, y, z) to ( – x, – y, – z), we 

automatically have  
 

 
 

Therefore the surface integral computations reduces to  
 



 
 

because the unit disk  W  bounded by  S has volume equal to  4ππππ/3.  

 

The Divergence Theorem is also useful for computing surface integrals when the 

boundaries of surfaces are somewhat complicated.   In particular, the example 

below is worked out in the following document: 
 

http://math.ucr.edu/~math10B/divthm.pdf 
 

Let  S  be the boundary of the region defined by the xy – plane, the right circular 

cylinder  x
 2
 + y

 2
  =  4, and the plane  x + z  =  6.   Take the outward normal 

orientation on  S.   Compute the flux of the vector field   
 

F(x, y, z)  =  (x
 2
  + sin z, x y + cos z, e 

y
) 

 

over the surface  S.  A drawing of the surface is given below. 
 

 
 

It turns out that the value of the surface integral in this problem is equal to  – 12ππππ. 



 

 
More conceptual implications of the Divergence Theorem 

 
As in the case of Stokes’ Theorem, the Divergence Theorem also has several 

noteworthy consequences of a qualitative nature. 

 

Volume computations.   We have already noted that Green’s Theorem provides 

ways of computing the area of a “good” region  D  in the coordinate plane by 

means of line integrals over its boundary curve  ΓΓΓΓ.  There are similar formulas for 

computing the volumes of “good” regions  D  in coordinate 3 – space by means of 

surface integrals over their boundary surfaces  S.   In the planar case, the key was 

to find vector fields  F  =  (P, Q)  such that  Q1 – P2  =  1.   Similarly, in the 3 – 

dimensional case, the key is to find vector fields  F  such that  ∇∇∇∇ · F  =  1.    Some 

obvious choices are the vector fields  (x, 0, 0),  (0, y, 0), and (0, 0, z).   For these 

choices, the Divergence Theorem yields the following volume formulas: 
 

 
 

Of course, the volume is also equal to the average of the three surface integrals on 

the right hand side, and hence the volume is also equal to  
 

 
 

which is also one third the flux of the “identity” vector field   F(x, y, z)  =  (x, y, z).  

 
Another basic source of examination problems are the “bait and switch” examples 

in which one has a vector field  F  with  ∇∇∇∇ · F  =  0.   One problem of this sort 

appears as Example 4 on page 444 of the text.  We shall give a simpler one of the 

same type.  

 



Let  S  be the boundary of the region in the half – space  z  ≥  0  defined by the 

spheroid with equation  x
 2
 + y

 2
  + 2z

 2
   =  1, and take the outward normal 

orientation on  S.   Compute the flux of the vector field   
 

F(x, y, z)  =  (y, z, x) 
 

over the surface  S.   
 

 
 

We first note that the divergence of  F  vanishes.  In a previous document we 

defined a parametrization for  S; one indication that the surface integral 

computation might be complicated is that the given parametrization involves  

SQRT(2) as a coefficient.    
 

The key observation in a problem of this sort is that the flux integral over  S  is 

equal to the flux integral over the flat disk  S′ (with the upward normal). 

 

To see this, note that  S  with the outward normal and   S′  with the downward 

normal form the boundary of the oblate hemispherical region defined by the 

inequalities  z  ≥  0  and  x
 2
 + y

 2
  + 2z

 2
   ≤  1,   Since the surface integral of  S′  

with the downward normal and the S′  with the upward normal  are negatives of 

each other, it follows that  
 

 
 

because the divergence of the vector field  F  vanishes.   Therefore the surface 

integrals over both  S  and  S′  are equal, so it is only necessary to compute the 

surface integral over the flat disk  S′.  The latter integral is very straightforward to 

compute, and the value of the integral turns out to be  0.  



 
Solving the vector field equation  F  =  ∇∇∇∇ × G  for  G   

 
In Chapter 6 of the course text we considered the question of whether  a given 

vector field  F  can be expressed as the gradient  ∇∇∇∇g    of some function g.  As 

noted earlier in this document and other commentaries, the condition  ∇∇∇∇ × F  =  0  

is always a necessary condition (since the curl of a gradient is always zero), and if 

the region is suitably restricted this condition is also sufficient.  Something similar 

happens with  3 – dimensional vector fields and the curl operator.  One can check 

directly that  ∇∇∇∇ · (∇∇∇∇ × F)  vanishes for all choices of  F.   Moreover, if the region is 

suitably restriced (for example, the region is all of  3 – space), then it turns out that 

F  =  ∇∇∇∇ × G  for some vector field  G  if and only if  ∇∇∇∇ · F  =  0;  we should note 

that the simple connectivity condition which appears in the theorem on recognizing 

gradients is not the appropriate restriction in the theorem on recognizing curls.   

 
We shall conclude this commentary with an example of a vector field  F  defined 

over all points of  3 – space except the origin such that  ∇∇∇∇ · F  =  0  but  F  is not 

the curl of a vector field defined everywhere in this region of space.   We shall take  

F  to be the “inverse square” vector field sending a nonzero vector  v  =  (x, y, z)  to  

F(v)  =  |v|
– 3

 v  (same direction as  v, but the length is equal to |v|
– 2

 ).   By 

Exercise 19 on page 222 of the course text, we know that   ∇∇∇∇ · F  =  0.   
 

On the other hand, if  S  is the unit sphere in coordinate  3 – space, then the 

integrand of the flux integral is  F · N  =  1, and therefore the flux of  F  over  S  is 

equal to the surface area of  S, which is 4ππππ.   Using this, we can show that  F  is not 

the curl  ∇∇∇∇ × G of some vector field  G as follows:   If  F  =  ∇∇∇∇ × G  on some 

region containing all points sufficiently close to S,  then by Stokes’ Theorem it 

follows that the surface integral of  F over  S  must be zero, for the surface  S  has 

no boundary curves.   Since we know that the flux of  F  over  S  is nonzero, it 

follows that the vector field  F  cannot be the curl of some other vector field  G 

defined on all points sufficiently close to the sphere S.   
 

 
Derivation of the Divergence Theorem 

 
Not surprisingly, this is much like the arguments we discussed for verifying 

Green’s Theorem and Stokes’ Theorem.   The first step is to prove the result for the 

special sorts of regions from Section 5.5,  on which triple integrals are computed as 



threefold iterated integrals; specifically, these are regions defined by standard 

sequences of inequalities like the following: 
 

a  ≤   x  ≤  b,       g(x)  ≤   y   ≤   h(x),       u1 (x, y)   ≤   z   ≤   u2 (x, y) 
 

Here is a drawing of a typical example, in which  D corresponds to the region 

defined by inequalities of the form  a  ≤   x  ≤  b   and   g(x)  ≤   y   ≤   h(x). 
 

 

(Source:  http://tutorial.math.lamar.edu/Classes/CalcIII/TripleIntegrals.aspx)  
 

As in the case of Green’s Theorem, verifying the Divergence Theorem for this 

special case is merely a matter of writing down the surface integral and the triple 

integral and then checking that these integrals are in fact equal; informally 

speaking, we may describe this as “an exercise in bookkeeping.” 
 

The most basic example of a region of the special type is a rectangular box defined 

by inequalities of the form  a  ≤   x  ≤  b,  c  ≤   y   ≤   d,  e   ≤   z   ≤   f ,  but it is 

important to recognize that certain other shapes can also be realized.  For example, 

if we choose the defining inequalities to be  0  ≤   x  ≤  1,   0  ≤   y   ≤   1 – x,  and  

0   ≤   z   ≤   1 – y – x,  then the region is a solid tetrahedron (=  a pyramid with a 

triangular base) with vertices (0,0,0), (1,0,0), (0,1,0) and (0,0,1):    
  

 
 



The second step is to show that the Divergence Theorem is also true if the surface 

and bounding region are obtained from the preceding standard examples by a 

“good” change of variables transformation  (x, y, z)  =  T(u, v, w) of the sort 

considered in Section 5.5 of the course text; in other words, the mapping T is 

supposed to be one – to – one and onto, its three coordinate functions  x(u, v, w), 

y(u, v, w), and   z(u, v, w)  are supposed to have continuous first partial derivatives, 

and the Jacobian of  (x, y, z) with respect to  (u, v, w) is never equal to zero.   
 

A typical example is shown in the drawing below; the idea is that the change of 

variables transformation T  maps the solid rectangular box on the left to the box on 

the right with curved edges and faces. 

 
 

If we have a transformation T defined on a tetrahedral region as illustrated above, 

then we get a similar picture. 

 
The third step is intuitively fairly simple, but it is also extremely difficult to prove 

rigorously.  Namely, we need to show that if we are given an arbitrary region  D 

bounded by a piecwise smooth surface (or configuration of surfaces), then it can be 

expressed as a union of nonoverlapping regions Dk of the sort considered in the 

second step.   One then checks that the triple integral over  D  is the sum of the 

triple integrals over the  subregions  , and similarly the surface integral over the 

boundary  S  is equal to the sum of the surface integrals over the boundaries  Sk of 

the subregions Dk.   Since the appropriate integrals over the regions  Dk and 

bounding surfaces  Sk are equal by the second step, it follows that their sums, 

which are the integrals over  D  and  S, must also be equal.  In most specific cases 

it is possible to check this fairly directly, but proving a general result is fairly 

difficult.    



Here is a simple example which illustrates the final part of the argument.  The 

figure below may be viewed as a solid staircase with three steps; its boundary 

consists of the steps, the right hand side, the front and the back. 

 
(Source: http://www.tiffinmats.com/html/images/stairSteps.jpg) 

 

This figure is equal to a union of six rectangular boxes which are stacked as 

indicated in the drawing below.   
 

 
 

It is instructive to analyze this configuration and check directly that the sum of the 

line integrals over the 36 faces of these six boxes reduces to the sum of the surface 

integrals over the 24 “outer” faces. 


