
Comments on Colley, Section 7.4 
 

Undergraduate physics courses for students in the physical sciences and 

engineering use vector analysis extensively.  In particular, Stokes’ Theorem and 

the Divergence Theorem are important in physics because they play key roles in 

the derivation of many basic laws in the subject.  This section of the text discusses 

some mathematical issues related to such uses of material from multivariable 

calculus.  In this commentary we shall discuss some of these topics from a slightly 

different viewpoint.   

 
UNIFIED NOTATION FOR INTEGRALS.   Frequently we shall discuss results 

on integrals that are valid for ordinary, double and triple integrals.  Eventually it 

becomes awkward and tedious to formulate separate statements for each of these 

dimensions.  One further disadvantage of this is that one can set up analogous  

theories of multiple integration for functions of  4, 5, or  n  variables (where n must 

be a positive integer; setting things up for infinitely many variables is more 

problematic), and obviously it is at best clumsy and at worst impossible to express 

such integrals using repeated integral signs.  In order to streamline the notation and 

emphasize the similarities between the results in various dimensions, we shall 

often use notation like 
  

 
 

to denote the  n – tuple integral of a real or vector valued function  f  defined on 

some region of coordinate  n – space.  Although in many cases everything goes 

through for all  n, for the purposes of this course nothing will be lost by assuming 

that  n  is one of 1, 2, 3. 

 
FACTS ABOUT CONTINUOUS FUNCTIONS.   Before proceeding, we shall 

mention some general properties of continuous functions that are fundamentally 

important but often do not receive much attention in calculus courses.  Given a 

point  p  in coordinate  n – space and a positive real number  r, as usual we shall 

define the closed disk  Dr ( p) with radius  r  and center  p  to be the set of all points  

y in  coordinate  n – space such that |y – p|  ≤   r.  We then have the following 

result: 

 



If  f  is a continuous real valued function on  Dr ( p), then  Dr ( p)  takes a 

maximum value  M  and a minimum value  m at some point(s) of  Dr ( p).  

Furthermore, if  z is an arbitrary real number between  m  and  M, then 

there is some  point w  in  Dr ( p)  such that  f (w)  =  z. 

 
In fact, this result remains valid if one replaces the closed disk with many other 

types of closed regions (for example, the sorts of regions in the coordinate plane or 

3 – space over which double and triple integrals can be evaluated in terms of 

iterated integrals), but the statement above is all that we shall need. 

 

Differentiation under the integral sign 
 
To illustrate the unified notational convention for ordinary and multiple integrals, 

we shall state a basic result on the topic in the heading for this subsection. 

 

THEOREM.   Suppose that  f (x, t) is a continuous function which is defined for 

all  (x, t)  such that  x  lies in some  n – dimensional region D and  t  lies in some 

interval  J, and assume further that  f  has a continuous partial derivative with 

respect to  t.   If   

 
 

then  g  is continuously differentiable on the interval J,  and its derivative is given 

by  

 

 

We should note another aspect of our unified notation here; namely, the formula 

works for both scalar and vector valued functions (recall that continuity and 

differentiability are definable for vectors in terms of coordinates).   The 1 – 

dimensional case of this result is Exercise 22 on page 360 of the text.  Further 

information appears in the following online documents: 
 

http://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign 

 

http://planetmath.org/encyclopedia/DifferentiationUnderIntegralSign.html 

 



Deriving consequences of Stokes’ Theorem and  

the Divergence Theorem 

 
At the beginning of Section 7.4 in the course text there are several formulas called 

Green’s formulas (also known as Green’s identities) which are derived from the 

Divergence Theorem, and some consequences of such formulas are discussed.   

Here are a few more direct consequences of Stokes’ Theorem and the Divergence 

Theorem which appear in physics and engineering.  

: 
 

 
 

One can prove this by applying the Divergence Theorem to the cross product of the 

vector fields  F  and  G.  Details are left to the reader.  Similarly, one can apply 

Stokes’ Theorem to a cross product of two vector fields and obtain the following: 
 

 
 

 

Applications to the laws of physics 
 

Instead of continuing with the mathematical discussion at this point, we shall 

consider a specific example from physics; namely, the Gauss Law for electrostatic 

fields.  The basic idea is that one has an electrostatic force field E, which is a 3 – 

dimensional vector field over some region in space, and a closed surface  S which 

bounds some subregion D.   One can state the integral version of Gauss’ Law for 

electrostatic fields as 
 

 
 

where   q  is the total charge inside  D  and  εεεε    0  is some fundamental physical 

(permittivity) constant.  We shall now explain how one can derive a fundamentally 

important alternate version of this law 
 



 
 

in which  ρρρρ  denotes the electrical charge density  at a given point.  This derivation 

is entirely formal and requires little or no understanding of the underlying physics.  

About the only physical input needed is that the total charge  q  inside  D  is equal 

to the integral of  the charge density  ρρρρ  over  D.  If we combine this fact with the 

integral form of Gauss’s Law and the Divergence Theorem, we obtain the 

following equation: 
 

 

 

This looks very much like the second equation above; the main difference is that 

the new equation states that the integrals of  ∇∇∇∇ · E  and  ρρρρ/εεεε    0   over  D  are equal, 

where there are many different choices for  D.   In order to derive the second 

equation, we need the following sort of retrieval principle: 

 
Suppose that  g  and  h  are continuous functions on a region such 

that for all closed disks  D   in the region, the integrals of  g  and  h  

over  D  are equal.  Then g  =  h. 

 
A proof of this result is given in the file 

 

http://math.ucr.edu/~res/math10B/multidifferentiation.pdf 
 

in the course directory. 

 
Similar discussions for the other three fundamental laws of electromagnetism are 

carried out on pages 461 – 465 of the course text; the previously cited document in 

the course directory proves a retrieval principle for surface integrals which is 

analogous to the one we have stated for functions.  Specifically, for such a result 

we start with two vector fields  F  and  G  whose flux integrals over a suitably 

large class of flat 2 – dimensional disks are equal, and hence the conclusion is that 

F  =  G. 

 
Related methods yield a derivation for the heat conduction equation, which is 

discussed in Exercisses 6 – 10 on pages 467 – 468 of the course text and also in the 



online document http://math.ucr.edu/~res/math10B/heat95.pdf .  For the sake of 

completeness, here are some references dealing with the derivation of wave motion 

equations; in this context also see Exercise 15 on pages 468 – 469 of the course 

text. 
 

http://www.mathphysics.com/pde/index.html 
 

http://www.mathphysics.com/pde/WEderiv.html 
 

http://www.mathphysics.com/pde/Maxwell.html 

 

 

ADDENDUM:  Mean value theorems for integrals 

 

 
This is a further note related to the Differentiation Theorems in the online 

document http://math.ucr.edu/~res/math10B/multidifferentiation.pdf.  Frequently this 

result is derived using a so – called Mean Value Theorem for integrals.  Versions 

of this result are stated at a couple of points in the course text; we shall state the 

result here and explain how one can derive the Differentiation Theorems from it. 
 

Section 5.6 of the course defines the average value for a continuous real valued 

function  f  on a reasonable region  D  by the formula 
 

 
 

where the measure of  D, written  µµµµ    (D), is the length, area or volume of  D 

depending upon whether the dimension  n  is 1, 2, or 3.  For the sake of 

completeness, we should note that similar definitions also exist in higher 

dimensions. 
 

One version of the Mean Value Theorem from single variable calculus states that, 

in the 1 – dimensional case, the average value of the function is in fact equal to the 

function at some point of the region D (which in this case is an interval) over 

which one is integrating.  Important generalizations of this to 2 and 3 variables are 

mentioned very informally on pages 473  and 445 of the course text.  Our purpose 

here is to give a formal statement of these results when  D  is a closed disk of the 

form  Dr ( p). 

 



Integral Mean Value Theorem.   Suppose that  f  is a continuous real valued 

function on Dr ( p) as above.   Then there is some point  Y  in  Dr ( p) such that  
 

 
 

Derivation of the Integral Mean Value Theorem.    We know that  f  assumes 

maximum and minimum values  M  and  m  on Dr ( p), so that  m  ≤   f (x)    ≤   M  

for all  x  in  D  =   Dr ( p).  Basic properties of integrals (as in the commentaries for 

Chapter 5) then yield the integral inequalities 
 

 
 

and since the integral of a constant function  k  over  D is equal to  k µµµµ    (D),  it 

follows immediately that we may rewrite these inequalities as  

 
 

and by the previously stated intermediate value theorem for continuous functions 

on  Dr ( p) it follows that the term in the middle is equal to  f (Y)  for some Y  in the 

disk  Dr ( p). 
 

DERIVATION OF THE DIFFERENTIATION THEOREMS.   Here is the 

derivation based upon the Mean Value Theorem(s).  Throughout this discussion 

the point  p  in the domain  D  will remain fixed, and to simplify notation we shall 

denote  Dr ( p)  by  rD.  Throughout this discussion we shall assume that  r  is 

always so small that   rD  is contained in the region on which the function  f  is 

defined. 
 

Let  r  >  0  be as above.  By the Mean Value Theorem, there is some point  Yr  in 

the disk  rD  such that  

 
 

and if we take the limit of the left hand side as  r  →→→→  0  we merely obtain  f ( p) .  

Of course, this means that the limit of the right hand side as  r  →→→→  0  and thus the 

limit of the latter is also equal to  f ( p) .  This is precisely the statement of the 

Differentiation Theorem.  


