NAME:

Mathematics 10B-010, Fall 2009, Examination 2

Answer Key

1. [25 points] Using spherical coordinates, set up and evaluate the integral of $f(x, y, z)=1-x^{2}-y^{2}-z^{2}$ over the disk defined by $x^{2}+y^{2}+z^{2} \leq 1$.

SOLUTION

In spherical coordinates the integrand is $1-\rho^{2}$, so using spherical coordinates we may write the integral as

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1}\left(1-\rho^{2}\right) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

We now evaluate this from the inside out to see that the threefold iterated integral is equal to

$$
\begin{gathered}
\left.\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi\left(\frac{\rho^{3}}{3}-\frac{\rho^{5}}{5}\right)\right|_{0} ^{1} d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi \cdot \frac{2}{15} d \phi d \theta= \\
\frac{2}{15} \int_{0}^{2 \pi}-\left.\cos \phi\right|_{0} ^{\pi} d \theta=\left.\frac{4}{15} \cdot 1\right|_{\theta=0} ^{\theta=2 \pi}=\frac{8 \pi}{15}
\end{gathered}
$$

2. [20 points] Let Γ be the piece of the hyperbola $y=1 / x$ starting at $(1,1)$ and ending at $\left(2, \frac{1}{2}\right)$. Evaluate the line integral

$$
\int_{\Gamma} y d x-x d y
$$

[Hint: Use the parametrization $(t, 1 / t)$.]

SOLUTION

If we use the indicated parametrization and substitute into the formula for expressing the line integral as an ordinary integral, we see that the line integral is equal to

$$
\begin{gathered}
\int_{1}^{2} \frac{1}{t} d t-t\left(-\frac{d t}{t^{2}}\right)=\int_{1}^{2} \frac{d t}{t}+\frac{d t}{t}=\left.2 \cdot \log _{e} t\right|_{1} ^{2}= \\
2 \log _{e} 2=\log _{e} 4
\end{gathered}
$$

3. [25 points] Let Γ be the boundary of the square S defined by $0 \leq x, y \leq 1$, and take a counterclockwise parametrization for Γ. Find a continuous function $k(x, y)$ such that the line integral $\int_{\Gamma}\left(x^{2}-y^{2}\right) d x+2 x y d y$ is equal to $\int_{0}^{1} \int_{0}^{1} k(x, y) d y d x$, and evaluate this integral.

SOLUTION

By Green's Theorem the line integral is equal to

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1}\left(\frac{\partial}{\partial x}(2 x y)-\frac{\partial}{\partial y}\left(x^{2}+y^{2}\right)\right) d y d x= \\
\int_{0}^{1} \int_{0}^{1}(2 y-(-2 y)) d y d x=\int_{0}^{1} \int_{0}^{1} 4 y d y d x
\end{gathered}
$$

so that $k(x, y)=4 y$. If we perform the iterated integrals from the inside out, we see that the right hand side is equal to

$$
\left.\int_{0}^{1} 2 y^{2}\right|_{0} ^{1} d x=\int_{0}^{1} 2 d x=2
$$

4. [30 points] In each of the following examples, determine whether the vector field \mathbf{F} is the gradient of some function g, and if so find all functions g such that $\nabla g=\mathbf{F}$:
(a) $\quad \mathbf{F}(x, y, z)=\left(-y, x, 3 x z^{2}\right)$
(b) $\quad \mathbf{F}(x, y)=\left(2 x y, x^{2}+y^{2}\right)$

SOLUTION

To simplify notation, denote the coordinate functions of the vector field as usual by P, Q and (in the 3 -dimensional case) R.

For (a), the vector field is not a gradient because

$$
\frac{\partial Q}{\partial x}=1 \neq-1=\frac{\partial P}{\partial y} \quad \text { and } \quad \frac{\partial R}{\partial x}=3 z^{2} \neq 0=\frac{\partial Q}{\partial z}
$$

For (b), the vector field is a gradient because

$$
\frac{\partial Q}{\partial x}=2 x=\frac{\partial P}{\partial y}
$$

To find the potential function g, start with

$$
g(x, y)=\int 2 x y d x=x^{2} y+h(y)
$$

for some function of integration $h(y)$. Since the second partial derivative if g must be $x^{2}+y^{2}$, the same is true if we partially differentiate the right hand side of the displayed equation. But this yields $x^{2}+h^{\prime}(y)$, and since this is $x^{2}+y^{2}$ we conclude that $h^{\prime}(y)=y^{2}$, so that $h(y)=\frac{1}{3} y^{3}+C$ for some constant of integration C. If we substitute this into the displayed equation, we see that

$$
g(x, y)=x^{2} y+\frac{y^{3}}{3}+C
$$

where C is a constant of integration.

