An example involving the Mean Value Theorem for Integrals

PROBLEM. Find the average value of the function $x y z$ over the cube $0 \leq x, y, z \leq 3$, and find a point $\left(x_{0}, y_{0}, z_{0}\right)$ where this average value is realized.

Solution. The volume of the cube is $3^{3}=27$, so the average value is equal to

$$
\frac{1}{27} \cdot \int_{0}^{3} \int_{0}^{3} \int_{0}^{3} x y z d z d y d x
$$

Since the integrand factors into a product of a function of x, a function of y, and a function of z, it follows that the integral is equal to

$$
\begin{gathered}
\int_{0}^{3} x d x \cdot \int_{0}^{3} y d y \cdot \int_{0}^{3} z d z=\left(\int_{0}^{3} x d x\right)^{3}= \\
\left(\left.\frac{x^{2}}{2}\right|_{0} ^{3}\right)^{3}=\left(\frac{9}{2}\right)^{3} .
\end{gathered}
$$

It follows that the average value of $x y z$ is equal to

$$
\frac{1}{27} \cdot\left(\frac{9}{2}\right)^{3}=\frac{27}{8}
$$

Any choice of $\left(x_{0}, y_{0}, z_{0}\right)$ for which $x_{0} y_{0} z_{0}=27 / 8$ will realize the average value. The simplest choice is to take all of them equal to $3 / 2$.

