Computing flux integrals in the plane

PROBLEM. Find the flux of the vector field $\mathbf{F}(x, y)=\left(x^{2}, y^{2}\right)$ across the line segment joining $(1,0)$ to $(0,1)$ where the preferred normal direction points away from the origin.

Solution. First take a standard parametrization of the curve described in the problem: $\gamma(t)=(1-t, t)$. It follows that the tangent vector to this curve is given by $\gamma^{\prime}(t)=(-1,1)$. The preferred normal direction associated to this parametrization is given by the Right Hand Rule: If you are facing in the tangent direction, then the preferred normal direction is on your right.

In other words, if $\left(x^{\prime}, y^{\prime}\right)$ is the tangent direction, then $\left(y^{\prime},-x^{\prime}\right)$ is the preferred normal direction.

Specializing to this problem, we see that the preferred normal direction for the given parametrization is $\mathbf{N}(t)=(1,1)$. This vector indeed points outward from the origin, so out parametrization is OK. If by some chance we ended up with a preferred normal pointing in the wrong direction, one easy way of fixing things would be to take the reverse parametrization of the curve; specifically, if γ is defined on the interval $[a, b]$, then the reverse parametrization is given by $\gamma^{*}(t)=\gamma(b-t+a)$, and its preferred normal direction will then point in the correct direction.

Solving the given problem is now easy, for we have

$$
\mathbf{F} \cdot \mathbf{N}=x^{2}+y^{2}
$$

and hence the value of this expression at $\gamma(t)$ is equal to $(1-t)^{2}+t^{2}=2 t^{2}-2 t+1$. Therefore the flux integral is equal to the ordinary integral

$$
\int_{0}^{1}\left(2 t^{2}-2 t+1\right) d t=\frac{2 t^{3}}{3}-t^{2}+\left.t\right|_{0} ^{1}=\frac{2}{3}
$$

We could also work this problem using the formula $\int_{\Gamma}-Q d x+P d y$, where $\mathbf{F}=(P, Q)$. Substitution into this formula yields

$$
\int_{0}^{1}\left(-t^{2}\right)(-d t)+(1-t)^{2} d t
$$

which is exactly the same integral we obtained above.

