An example involving Stokes' Theorem

PROBLEM. Find the line integral

$$
\int_{\Gamma} \mathbf{F} \cdot d \mathbf{s}
$$

where \mathbf{F} is the vector field $\mathbf{F}(x, y, z)=\left(x+2 y+4 z, x^{2}+y^{2}+z^{2}, x+y+z\right)$ and Γ is the boundary of the solid triangular region S consisting of all points in the first octant which are on the plane with equation $x+y+z=1$, taken in the counterclockwise sense.

The advantage of using Stokes' Theorem for this problem is that the line integral has three smooth pieces
(a) the segment joining $(1,0,0)$ to $(0,1,0)$,
(b) the segment joining $(0,1,0)$ to $(0,0,1)$,
(c) the segment joining $(0,0,1)$ to $(1,0,0)$,
and accordingly the evaluation of the line integral involves three separate integral calculations. Stokes' Theorem says the line integral equals a surface integral which can be computed without breaking things up into smaller pieces.

Solution. The first thing we should do is find the parametrization for the solid triangle S; we can do this by using the equation $z=1-x-y$ to write $\mathbf{X}(x, y)=(x, y, 1-x-y)$. It follows immediately that the normal vector is given by $\mathbf{N}(x, y)=\left(-z_{x},-z_{y}, 1\right)=(1,1,1)$. Note that the parameter values run over all x and y in the first quadrant such that $0 \leq$ $x+y \leq 1$, so that $0 \leq x \leq 1$ and $0 \leq y \leq 1-x$.

Next, we need to compute the curl of \mathbf{F} using the standard determinant formula:

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
D_{x} & D_{y} & D_{z} \\
x+2 y+4 z & x^{2}+y^{2}+z^{2} & x+y+z
\end{array}\right|=(1-2 z, 3,2 x-2)
$$

Therefore $(\nabla \times \mathbf{F}) \cdot \mathbf{N}=2 x-2 z+2=4 x+2 y$. This means that the line integral and equivalent surface integral are given by

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1-x} 2 y+4 x d y d x & =\int_{0}^{1}(1-x)^{2}+4 x(1-x) d x= \\
\int_{0}^{1} 2 x-3 x^{2}+1 d x & =x^{2}-x^{3}+\left.x\right|_{0} ^{1}=1
\end{aligned}
$$

