Answers to additional exercises for Colley, Chapter 5

Section 5.1

S1. 3

S2. 8

Section 5.2

S1. 32

S2. TRUE. Everything about the integral on the left hand side is symmetric with respect to both the x-axis and the y-axis. The first of these implies that the integral over the square defined by $-1 \le x \le 1$ and $-1 \le y \le 1$ is twice the integral over the rectangle define by $0 \le x \le 1$ and $-1 \le y \le 1$, and the second implies that the integral over the latter rectangle is equal to twice the integral over the square defined by $0 \le x \le 1$ and $0 \le y \le 1$. Combining these, we conclude that the integral over the larger square is four times the integral over the smaller one.

S3. $\log_e 3 - \frac{3}{2}\log_e 2$ **S4.** $\frac{1}{3}$ **S5.** $\frac{2}{3}$

S6. The region A is given by the inequalities $0 \le y \le \sqrt{3}$ and $-y \le x \le 2y - y^2$. In order to interchange the order of integration, it is necessary to split this up into two regions, one of which is defined by $0 \le x \le 1$ and $1 - \sqrt{1-x} \le y \le 1 + \sqrt{1-x}$, and the other of which is defined by $-\sqrt{3} \le x \le 0$ and $-x \le y \le 1 + \sqrt{1-x}$. The area is equal to

$$\frac{9}{2} - \sqrt{3} .$$

S7. 1

Section 5.3

S1.
$$\int_{0}^{1} \int_{y}^{1} \sqrt{1 - x^{2}} \, dx \, dy$$

S2.
$$\int_{-1}^{1} \int_{0}^{\sqrt{1 - x^{2}}} \log_{e}(1 + x^{2}y^{2}) \, dy \, dx$$

S3.

$$\int_0^1 \int_{x^2}^{\sqrt[3]{x}} \tan(xy) \, dy \, dx$$

 $\frac{1}{2}(\cos 1 - 1)$, where the θ in $\cos \theta$ is given by radian measure. **S4**.

Section 5.4

- **S1**. 12 $\frac{3}{8}$
- **S2**.

S3.
$$\frac{(e-1)^2}{2}$$

S4. The region is defined by the inequalities $-1 \le z \le 1$, $-\sqrt{(1-z^2)/2} \le x \le \sqrt{(1-z^2)/2}$, and $-\sqrt{1-x^2-z^2} \le y \le \sqrt{1-x^2-z^2}$.

The region is defined by the inequalities $0 \le x \le 4, 0 \le y \le 4-x$, and $0 \le z \le x+y+1$. **S5**.

 $\frac{7}{60}$ **S6**.

S7.
$$\int_{-\sqrt{3}/2}^{\sqrt{3}/2} \int_{-\sqrt{\frac{3}{4}-x^2}}^{\sqrt{\frac{3}{4}-x^2}} \int_{\frac{1}{2}}^{\sqrt{1-x^2-y^2}} f(x,y,z) \, dz \, dy \, dx$$

Section 5.5

S1. The corresponding region in the uv-plane is the triangle whose vertices are (0,0), (0,1) and (1,0).

S2. The corresponding region in the uv-plane is the square whose vertices are (0,0), (0,1), (1,0) and (1,1).

 $\frac{a^{3}}{3} \\
\frac{2}{3} \\
0 \\
\pi \\
8 \\
\frac{8}{3}$ **S3**. **S4**. **S5**. **S6**. **S7**. 0 **S8**. uv(u+v-uv)**S9**. **S10**. 17

 $\frac{\pi}{2}$ is the value of the original integral. The Jacobian of (x, y) with respect to (u, v)S11. turns out to be $4(u^2 + v^2)$, so the correspondint uv-integrals will be given as follows:

$$\int \int_{R} x \, dx \, dy = \int \int_{S} (u^{2} - v^{2}) \cdot 4(u^{2} + v^{2}) \, du \, dv$$

$$\int \int_R y \, dx \, dy = \int \int_S (2uv) \cdot 4(u^2 + v^2) \, du \, dv$$

For computational purposes it is convenient to rewrite the right hand sides in polar coordinates. If make such a change of variables, these are the iterated integrals we obtain (in order):

$$\int_0^{\pi/2} \int_0^1 4r^5 (\cos^2\theta - \sin^2\theta) \, dr \, d\theta \, , \qquad \int_0^{\pi/2} \int_0^1 8r^5 (\cos\theta\sin\theta) \, dr \, d\theta$$

Section 5.6

- S1. $\overline{x} = \overline{y} = 0, \ \overline{z} = h/4$ S2. $\overline{x} = \overline{y} = 0, \ \overline{z} = 3r/8$ S3. $\overline{x} = \overline{y} = 0,$ $\overline{z} = \frac{3(R^4 - r^4)}{8(R^3 - r^3)}$
- **S4.** $\frac{1}{2}(1+e+e^{-1})$ **S5.** $\frac{3}{\pi}$