Answers to additional exercises for Colley, Chapter 5

Section 5.1

S1. 3
S2. 8

Section 5.2

S1. 32
S2. TRUE. Everything about the integral on the left hand side is symmetric with respect to both the x-axis and the y-axis. The first of these implies that the integral over the square defined by $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$ is twice the integral over the rectangle define by $0 \leq x \leq 1$ and $-1 \leq y \leq 1$, and the second implies that the integral over the latter rectangle is equal to twice the integral over the square defined by $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Combining these, we conclude that the integral over the larger square is four times the integral over the smaller one.

S3. $\quad \log _{e} 3-\frac{3}{2} \log _{e} 2$
S4. $\frac{1}{3}$
S5. $\frac{2}{3}$
S6. The region A is given by the inequalities $0 \leq y \leq \sqrt{3}$ and $-y \leq x \leq 2 y-y^{2}$. In order to interchange the order of integration, it is necesary to split this up into two regions, one of which is defined by $0 \leq x \leq 1$ and $1-\sqrt{1-x} \leq y \leq 1+\sqrt{1-x}$, and the other of which is defined by $-\sqrt{(} 3) \leq x \leq 0$ and $-x \leq y \leq 1+\sqrt{1-x}$. The area is equal to

$$
\frac{9}{2}-\sqrt{3} .
$$

S7. 1

Section 5.3

S1. $\int_{0}^{1} \int_{y}^{1} \sqrt{1-x^{2}} d x d y$
S2.

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \log _{e}\left(1+x^{2} y^{2}\right) d y d x
$$

S3.

$$
\int_{0}^{1} \int_{x^{2}}^{\sqrt[3]{x}} \tan (x y) d y d x
$$

S4. $\quad \frac{1}{2}(\cos 1-1)$, where the θ in $\cos \theta$ is given by radian measure.

Section 5.4

S1. 12
S2. $\frac{3}{8}$
S3. $\frac{(e-1)^{2}}{2}$
S4. The region is defined by the inequalities $-1 \leq z \leq 1,-\sqrt{\left(1-z^{2}\right) / 2} \leq x \leq$ $\sqrt{\left(1-z^{2}\right) / 2}$, and $-\sqrt{1-x^{2}-z^{2}} \leq y \leq \sqrt{1-x^{2}-z^{2}}$.

S5. The region is defined by the inequalities $0 \leq x \leq 4,0 \leq y \leq 4-x$, and $0 \leq z \leq x+y+1$.
S6. $\quad \frac{7}{60}$
S7. $\quad \int_{-\sqrt{3} / 2}^{\sqrt{3} / 2} \int_{-\sqrt{\frac{3}{4}-x^{2}}}^{\sqrt{\frac{3}{4}-x^{2}}} \int_{\frac{1}{2}}^{\sqrt{1-x^{2}-y^{2}}} f(x, y, z) d z d y d x$

Section 5.5

S1. The corresponding region in the $u v$-plane is the triangle whose vertices are $(0,0)$, $(0,1)$ and $(1,0)$.

S2. The corresponding region in the $u v$-plane is the square whose vertices are $(0,0)$, $(0,1),(1,0)$ and $(1,1)$.

S3. $\frac{a^{3}}{3}$
S4. $\frac{2}{3}$
S5. 0
S6. $\frac{\pi}{8}$
S7. $\frac{8}{3}$
S8. 0
S9. $u v(u+v-u v)$
S10. $\quad 17$
S11. $\frac{\pi}{2}$ is the value of the original integral. The Jacobian of (x, y) with respect to (u, v) turns out to be $4\left(u^{2}+v^{2}\right)$, so the correspondint $u v$-integrals will be given as follows:

$$
\iint_{R} x d x d y=\iint_{S}\left(u^{2}-v^{2}\right) \cdot 4\left(u^{2}+v^{2}\right) d u d v
$$

$$
\iint_{R} y d x d y=\iint_{S}(2 u v) \cdot 4\left(u^{2}+v^{2}\right) d u d v
$$

For computational purposes it is convenient to rewrite the right hand sides in polar coordinates. If make such a change of variables, these are the iterated integrals we obtain (in order):

$$
\int_{0}^{\pi / 2} \int_{0}^{1} 4 r^{5}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) d r d \theta, \quad \int_{0}^{\pi / 2} \int_{0}^{1} 8 r^{5}(\cos \theta \sin \theta) d r d \theta
$$

Section 5.6

S1. $\bar{x}=\bar{y}=0, \bar{z}=h / 4$
S2. $\bar{x}=\bar{y}=0, \bar{z}=3 r / 8$
S3. $\bar{x}=\bar{y}=0$,

$$
\bar{z}=\frac{3\left(R^{4}-r^{4}\right)}{8\left(R^{3}-r^{3}\right)}
$$

S4. $\quad \frac{1}{2}\left(1+e+e^{-1}\right)$
S5. $\frac{3}{\pi}$

