
Answers to additional exercises for Colley, Chapter 5
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Section 5.2
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S2. TRUE. Everything about the integral on the left hand side is symmetric with respect
to both the x−axis and the y−axis. The first of these implies that the integral over the square
defined by −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1 is twice the integral over the rectangle define by 0 ≤ x ≤ 1
and −1 ≤ y ≤ 1, and the second implies that the integral over the latter rectangle is equal to twice
the integral over the square defined by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Combining these, we conclude
that the integral over the larger square is four times the integral over the smaller one.
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(cos 1 − 1), where the θ in cos θ is given by radian measure.
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S4. The region is defined by the inequalities −1 ≤ z ≤ 1, −
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S5. The region is defined by the inequalities 0 ≤ x ≤ 4, 0 ≤ y ≤ 4−x, and 0 ≤ z ≤ x+y+1.
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S1. The corresponding region in the uv−plane is the triangle whose vertices are (0, 0),
(0, 1) and (1, 0).

S2. The corresponding region in the uv−plane is the square whose vertices are (0, 0),
(0, 1), (1, 0) and (1, 1).
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is the value of the original integral. The Jacobian of (x, y) with respect to (u, v)

turns out to be 4(u2 + v2), so the correspondint uv-integrals will be given as follows:
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For computational purposes it is convenient to rewrite the right hand sides in polar coordinates. If
make such a change of variables, these are the iterated integrals we obtain (in order):
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S1. x = y = 0, z = h/4
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S3. x = y = 0,

z =
3(R4 − r4)

8(R3 − r3)

S4. 1

2
(1 + e + e−1)

S5.
3

π

3


