ADDITIONAL EXERCISES FOR MATHEMATICS 10B
 FALL 2009

Chapter 5

The exercises are organized by sections of the course text (Colley, Vector Calculus, Third Edition).

Exercises for Colley, Section 5.1

S1. Evaluate the following iterated integral:

$$
\int_{0}^{1} \int_{0}^{2}(x+y) d y d x
$$

S2. Evaluate the following iterated integral, and describe the region R for which the expression represents a double integral over R :

$$
\int_{0}^{2} \int_{0}^{1}(1+2 x+2 y) d y d x
$$

Exercises for Colley, Section 5.2

S1. Use double integrals to find the volume of the solid defined by the inequalities $0 \leq x \leq 4,0 \leq y \leq 2,0 \leq z \leq 6-2 y$.

S2. Is the following equation true or false? Give reasons to support your answer.

$$
\int_{-1}^{1} \int_{-1}^{1} \cos \left(x^{2}+y^{2}\right) d x d y=4 \cdot \int_{0}^{1} \int_{0}^{1} \cos \left(x^{2}+y^{2}\right) d x d y
$$

S3. Evaluate the following iterated integral:

$$
\int_{1}^{2} \int_{1}^{x} \frac{1}{(x+y)^{2}} d y d x
$$

S4. Evaluate the following iterated integral:

$$
\int_{0}^{1} \int_{0}^{x} \sqrt{1-x^{2}} d y d x
$$

S5. Evaluate the following iterated integral:

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d y d x
$$

S6. Determine the limits of integration for the double integral

$$
\iint_{A} f(x, y) d x d y
$$

if A is the region bounded by the graphs of $x=-y$ and $x=2 y-y^{2}$, for both orders of integration. Find the area of A by computing this integral when $f=1$:

S7. Find the volume of the 3 -dimensional region bounded by the surfaces $z=\sin y, x=0$, $x=1, y=0, y=\frac{1}{2} \pi$, and the $x y$-plane.

Exercises for Colley, Section 5.3

S1. Interchange the order of integration in the following iterated integral:

$$
\int_{0}^{1} \int_{0}^{x} \sqrt{1-x^{2}} d y d x
$$

S2. Interchange the order of integration in the following iterated integral:

$$
\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \log _{e}\left(1+x^{2} y^{2}\right) d x d y
$$

S3. Interchange the order of integration in the following iterated integral:

$$
\int_{0}^{1} \int_{y^{3}}^{\sqrt{y}} \tan (x y) d x d y
$$

S4. Evaluate the following iterated integral by interchanging the order of integration:

$$
\int_{0}^{1} \int_{y}^{1} \sin x^{2} d x d y
$$

Exercises for Colley, Section 5.4

S1. Find the volume of the solid bounded by the planes with equations $x=0, y=0, z=0$ and $2 x+3 y+4 z=12$. [Hint: The intersection of this plane with the $x y$-plane is the line joining the points $(6,0,0)$ and $(0,4,0)$.]

S2. Find the volume of the solid defined by the inequalities $0 \leq x \leq y, 0 \leq y \leq 1$, $0 \leq z \leq 1-x y$.

S3. Find the triple integral of the function $z e^{x+y}$ over the cube $0 \leq x, y, z \leq 1$.
S4. Find the iterated integral limits of integration for the region cut by the solid disk $x^{2}+y^{2}+z^{2} \leq 4$ from the cylinder $2 x^{2}+z^{2}=1$.

S5. Find the iterated integral limits of integration for the region bounded by the planes $x=0, y=0, z=0, x+y=4$ and $x-z-y-1$.

S6. Evaluate the following iterated integral:

$$
\int_{0}^{1} \int_{0}^{x} \int_{0}^{y}(x+y z) d z d y d x
$$

S7. Suppose that $f(x, y, z)$ is a reasonable function which is defined for all points in coordinate 3 -space, and let W be the region defined by the inequalities $x^{2}+y^{2}+z^{2} \leq 1$ and $\frac{1}{2} \leq z \leq 1$. Express the triple integral of f over W as an interated integral $\iiint \ldots d z \overline{d y} d x$; in other words, find the limits of integration.

Exercises for Colley, Section 5.5

S1. Let $(x, y)=\mathbf{T}(u, v)=(3 u+2 v, 3 v)$, let R be the set of points in the $x y$-plane that are on or inside the triangle with vertices $(0,0),(3,0)$ and $(2,3)$, and let S be the region in the $u v$-plane which maps to R under T. Describe the region S by (a)drawing a sketch in the $u v$-plane, (b) expressing this in words or algebraic inequalities.

S2. Let $(x, y)=\mathbf{T}(u, v)=(4 u+v, u+2 v)$, let R be the set of points in the $x y$-plane that are on or inside the parallelogram with vertices $(0,0),(1,2),(4,1)$ and $(5,3)$, and let S be the region in the $u v$-plane which maps to R under T. Describe the region S by (a) drawing a sketch in the $u v$-plane, (b) expressing this in words or algebraic inequalities.

S3. Evaluate the following integral by changing from rectangular to polar coordinates:

$$
\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y d x d y
$$

S4. Evaluate the following integral by changing from rectangular to polar coordinates:

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} x y d y d x
$$

S5. Evaluate the following integral by changing from rectangular to cylindrical coordinates:

$$
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4} x d z d y d x
$$

S6. Evaluate the following integral by changing from rectangular to spherical coordinates:

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x
$$

S7. Let $(x, y)=\mathbf{T}(u, v)=\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)$, and let R be the set of points in the $x y$-plane that are on or inside the square with vertices $(1,0),(0,1),(-1,0)$ and $(0,-1)$. Evaluate the following integral using the change of variables associated to \mathbf{T} :

$$
\iint_{R} 4\left(x^{2}+y^{2}\right) d x d y
$$

S8. Using the same definitions and procedure as in the previous exercise, evaluate the following integral:

$$
\iint_{R} 48 x y d x d y
$$

S9. Find the Jacobian

$$
\frac{\partial(x, y, x)}{\partial(u, v, w)}
$$

for the change of variables associated to the following transformation:

$$
(x, y, z)=\mathbf{T}(u, v, w)=(u(1-v), u v(1-w), u v w)
$$

S10. Find the Jacobian

$$
\frac{\partial(x, y, x)}{\partial(u, v, w)}
$$

for the change of variables associated to the following transformation:

$$
(x, y, z)=\mathbf{T}(u, v, w)=(4 u-v, 4 v-w, u+w)
$$

S11. Let \mathbf{T} be the change of variables transformation $(x, y)=\mathbf{T}(u, v)=\left(u^{2}-v^{2}, 2 u v\right)$, let S be the region in the $u v$-plane defined by $u, v \geq 0$ and $u^{2}+v^{2} \leq 1$, and let R be the image of S under T. Find the area of R, and also describe the integrals of the functions x and y over D as integrals in u and v, and convert these to polar coordinates using the change of variables $u=r \cos \theta, v=r \sin \theta$.

Exercises for Colley, Section 5.6

S1. Using cylindrical coordinates, find the centroid of a right circular cone for which the base has radius r and the height is equal to h.

S2. Using spherical coordinates, find the centroid of a hemispherical solid of radius r with uniform density.

S3. Using spherical coordinates, find the centroid of the solid of uniform density lying between two concentric hemispheres with radii r and R, where $r<R$.

S4. Find the average value of $f(x, y)=e^{x+y}$ on the solid triangular region with vertices $(0,0),(1,0)$ and $(0,1)$. This region is defined by the inequalities $x, y \geq 0$ and $x+y \leq 1$.

S5. Find the average value of $f(x, y, z)=e^{-z}$ on the disk $x^{2}+y^{2}+z^{2} \leq 1$.

