ADDITIONAL EXERCISES FOR MATHEMATICS 10B

FALL 2009

Chapter 6

The exercises are organized by sections of the course text (Colley, Vector Calculus, Third Edition).

Exercises for Colley, Section 6.1

S1. Evaluate the given line integral over the indicated curve:

$$
\int_{C} \cos z d s \quad C: \mathbf{r}(t)=(\sin t, \cos t, t), \quad 0 \leq t \leq 2 \pi
$$

S2. Evaluate the given line integral over the indicated curve:

$$
\int_{C}(x-y) d s \quad C: \mathbf{r}(t)=(4 t, 3 t), \quad 0 \leq t \leq 2
$$

S3. Evaluate the given line integral over the indicated curve:

$$
\int_{C} x y z d s \quad C: \mathbf{r}(t)=(3,12 t, 5 t), \quad 0 \leq t \leq 2
$$

In each of exercises S4 and S5 below, evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{r}(t)$ is the chosen parametrization for the curve C :

S4. $\quad \mathbf{F}(x, y)=(x y, y), \quad \mathbf{r}(t)=(4 t, t), \quad 0 \leq t \leq 1$.
S5. $\quad \mathbf{F}(x, y)=(3 x, 4 y), \quad \mathbf{r}(t)=(2 \cos t, 2 \sin t), \quad 0 \leq t \leq \frac{\pi}{2}$.
S6. Evaluate the line integral

$$
\int_{C} x d x+y d y+5 z d z
$$

where C is parametrized by $\mathbf{r}(t)=(2 \cos t, 2 \sin t, t)$, where $0 \leq t \leq 2 \pi$.
S7. \quad Suppose we are given a vector field \mathbf{F} and a curve C in the domain over which \mathbf{F} is defined. Explain why $\int_{C} \mathbf{F} \cdot d$ s is zero if the tangent vectors to C are perpendicular to \mathbf{F} everywhere and $\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{C}|\mathbf{F}| d s$ if the tangent vector to C are parallel to \mathbf{F} everywhere.

Exercises for Colley, Section 6.2

S1. Using Green's Theorem, evaluate the line integral

$$
\int_{C}(y-x) d x+(2 x-y) d y
$$

if C is the boundary curve for the (bounded) region lying between the graphs of $y=x$ and $y=x^{2}-x$.

S2. Using Green's Theorem, find the area of the region bounded by the graphs of $y=2 x+1$ and $y=4-x^{2}$.

S3. Using Green's Theorem, show that the centroid of a region with area $|A|$ and boundary curve C has the following coordinates:

$$
\bar{x}=\frac{1}{2|A|} \int_{C} x^{2} d y \quad \bar{y}=\frac{1}{2|A|} \int_{C}-y^{2} d x
$$

S4. Suppose that the function f (with continuous second partial derivatives) is harmonic on the region D; in other words

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

Suppose that the boundary of D is a simple closed curve, and call this curve ∂D. Prove that

$$
\int_{\partial D}\left(\frac{\partial f}{\partial y}\right) d x-\left(\frac{\partial f}{\partial x}\right) d y=0 .
$$

Exercises for Colley, Section 6.3

S1. Find all functions f such that $\nabla f(x, y)=\left(2 x y, x^{2}+y^{2}\right)$. [Note. The phrase "all functions" includes the possibility that there are no such functions at all.]

S2. Find all functions f such that $\nabla f(x, y, z)=\left(-y, x, 3 x z^{2}\right)$. [Note. The phrase "all functions" includes the possibility that there are no such functions at all.]

S3. Find all functions f such that $\nabla f(x, y, z)=(z+2 y, 2 x-z, x-y)$. [Note. The phrase "all functions" includes the possibility that there are no such functions at all.]

S4. Evaluate the line integral

$$
\int_{C} y z d x+x z d y+x y d z
$$

where C is the broken line curve which goes first from $(1,0,0)$ to $(0,1,0)$ along a straight line segment, and then from $(0,1,0)$ to $(0,0,1)$ along a straight line segment.

S5. Let C be the boundary curve for the square $-1 \leq x, y \leq 1$ parametrized in the usual counterclockwise sense. Prove that

$$
\int_{C}\left(z^{3}+2 x y\right) d x+x^{2} d y+3 x z^{2} d z=0
$$

S6. Suppose that $f(x, y, z)$ is a function such that $\nabla f=\left(2 x y z e^{x^{2}}, z e^{x^{2}}, y e^{x^{2}}\right)$ and $f(0,0,0)=5$. Find $f(1,1,2)$.

