
ADDITIONAL EXERCISES FOR MATHEMATICS 10B

FALL 2009

Chapter 7

The exercises are organized by sections of the course text (Colley, Vector Calculus, Third
Edition).

Exercises for Colley, Section 7.1

S1. Find an equation defining the tangent plane to the parametrized surface x(u, v) =
(u+v, u−v, v) at the point p = (1, 1, 0). [Hint: The first step is to find (u, v) such that x(u, v) = p).

S2. Give a set of parametric equations for the surface of revolution obtained by revolving
the graph of the function x = sin z (0 ≤ z ≤ π) about the z-axis.

S3. Find the surface area for the piece of the unit sphere x2 + y2 + z2 = 1 cut out by the
conical region z ≥

√

x2 + y2.

Exercises for Colley, Section 7.2

S1. Find the surface area for the portion of the graph of z = 10 + 2x− 3y over the square
with vertices (0, 0), (2, 0), (0, 2), and (2, 2).

S2. Find the surface area for the portion of the graph of z = 4 + x2 − y2 over the disk
defined by x2 + y2 ≤ 1.

S3. Find the surface area for the portion of the graph of z = xy over the disk defined by
x2 + y2 ≤ 16.

S4. A thin conical shell is given in coordinates by z = 4 − 2
√

x2 + y2, where 0 ≤ z ≤ 4,
and the density at each point is proportional to the distance between the point and the z−axis
(hence is k

√

x2 + y2 for some constant k. Find the total mass of this shell.

In each of exercises S5–S7 below, evaluate the surface integral
∫ ∫

S
F ·dS, for the given choices

of the vector field (= vector valued function) F and the oriented surface S. In each case take the
upward pointing normal orientation for S.

S5. F(x, y, z) = (3z, 4, y) and S is the portion of the plane x+y+ z = 1 in the first octant.

S6. F(x, y, z) = (x, y, z) and S is the portion of the paraboloid z = 9 − x2 − y2 lying in
the upper half-space defined by z ≥ 0.
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S7. F(x, y, z) = (x, y, z) and S is the portion of the sphere x2 + y2 + z2 = 1 in the first
octant.

Exercises for Colley, Section 7.3

S1. Using Stokes’ Theorem, calculate the line integral

∫

Γ

F · dx

where F(x, y, z) = (2y, 3z, x) and Γ bounds the triangle with vertices (0, 0, 0), (0, 2, 0), (1, 1, 1).

S2. Suppose that D is the solid triangle consisting of all points which are on the plane
with equation 2x+2y + z = 6 and in the first octant, and let Γ be the boundary of D parametrized
in the counterclockwise sense. Evaluate the line integral

∫

Γ

F · dx

where F(x, y, z) = (−y2, z, x).

S3. Evaluate the surface integral
∫ ∫

S
F · dS, where F(x, y, z) = (x2z,−y, xyz) and S is

the boundary of the cube defined by the inequalities 0 ≤ x ≤ a, 0 ≤ y ≤ a, 0 ≤ z ≤ a; as usual,
take the normal to the surface to point outwards.

S4. Evaluate the surface integral
∫ ∫

S
F · dS, where F(x, y, z) = (z + 2x, x3y,−2z) and S

is the boundary of the hemisphere defined by the inequalities x2 + y2 + z2 ≤ 1 and 0 ≤ z ≤ 1; as
usual, take the normal to the surface to point outwards.

S5. Evaluate the surface integral
∫ ∫

S
(∇×F) ·dS, where S is the upper hemisphere of the

sphere x2 + y2 + z2 = 16, the vector field F(x, y, z) = (x2 + y − 4, 3xy, 2xz + z2), and the normal
orientation of S is upward.

S6. Suppose that f and g are functions with continuous partial derivatives (defined on a
given region). Prove that ∇× (f∇g) = (∇f) × (∇g).

S7. Evaluate the surface integral
∫ ∫

S
F · dS, where S is the unit sphere with the outward

normal and F(x, y, z) = (x3, y3, z3).

S8. Evaluate the surface integral
∫ ∫

S
F · dS, wheere S bounds the cylinder defined by

x2 + y2 ≤ 1 and 0 ≤ z ≤ 1, and F(x, y, z) = (1, 1, z(x2 + y2)2).

S9. Let F be a vector field defined on all of 3-space such that ∇ · F = 0 and ∇× F = 0.
Prove that F = ∇g, where g satisfies ∇2g = 0 (in other words, g is harmonic).

S10. Suppose that the vector field F is defined and has continuous partial derivatives on a
region containing the closed surface S and the region W bounded by S, and assume further that the
restriction of F to S is tangent to S at all points of the latter. Prove that

∫ ∫ ∫

W
(∇ ·F) dV = 0.
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Exercises for Colley, Section 7.4

S1. Let F be a vector field defined in a region of coordinate 3-space. An integrating

factor for F is a positive valued function λ defined on the region such that λ has continuous partial
derivatives and λF = ∇g for some function g. Prove that if F has an integrating factor, then F

and ∇× F are perpendicular to each other. [Hint: What can we say about the curl of λF? Why
is the curl of F equal to ∇(loge λ)×F, and how can one derive the conclusion of the problem from
this?

S2. Let F be the vector field F(x, y, z) = (y, z, x). Show that there is no integrating factor
for F on the open first octant defined by x, y, z > 0.

S3. Let F = (P,Q,R) be a vector field defined on a region of coordinate 3-space, and
define the Laplacian ∇2F by the coordinate-wise formula (∇2P,∇2Q,∇2R). As in the case of
scalar functions, we shall say that F is harmonic if ∇2F = 0. Using Exercise 15(a), show that F is
harmonic if both ∇× F = 0 and ∇ · F = 0.
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