ADDITIONAL EXERCISES FOR MATHEMATICS 10B

FALL 2009

Chapter 7

The exercises are organized by sections of the course text (Colley, Vector Calculus, Third Edition).

Exercises for Colley, Section 7.1

S1. Find an equation defining the tangent plane to the parametrized surface $\mathbf{x}(u, v)=$ $(u+v, u-v, v)$ at the point $\mathbf{p}=(1,1,0)$. [Hint: The first step is to find (u, v) such that $\mathbf{x}(u, v)=\mathbf{p})$.

S2. Give a set of parametric equations for the surface of revolution obtained by revolving the graph of the function $x=\sin z(0 \leq z \leq \pi)$ about the z-axis.

S3. Find the surface area for the piece of the unit sphere $x^{2}+y^{2}+z^{2}=1$ cut out by the conical region $z \geq \sqrt{x^{2}+y^{2}}$.

Exercises for Colley, Section 7.2

S1. Find the surface area for the portion of the graph of $z=10+2 x-3 y$ over the square with vertices $(0,0),(2,0),(0,2)$, and $(2,2)$.

S2. Find the surface area for the portion of the graph of $z=4+x^{2}-y^{2}$ over the disk defined by $x^{2}+y^{2} \leq 1$.

S3. Find the surface area for the portion of the graph of $z=x y$ over the disk defined by $x^{2}+y^{2} \leq 16$.

S4. A thin conical shell is given in coordinates by $z=4-2 \sqrt{x^{2}+y^{2}}$, where $0 \leq z \leq 4$, and the density at each point is proportional to the distance between the point and the z-axis (hence is $k \sqrt{x^{2}+y^{2}}$ for some constant k. Find the total mass of this shell.

In each of exercises S5-S7 below, evaluate the surface integral $\iint_{\mathbf{S}} \mathbf{F} \cdot d \mathbf{S}$, for the given choices of the vector field (= vector valued function) \mathbf{F} and the oriented surface S. In each case take the upward pointing normal orientation for S.

S5. $\quad \mathbf{F}(x, y, z)=(3 z, 4, y)$ and S is the portion of the plane $x+y+z=1$ in the first octant.
S6. $\quad \mathbf{F}(x, y, z)=(x, y, z)$ and S is the portion of the paraboloid $z=9-x^{2}-y^{2}$ lying in the upper half-space defined by $z \geq 0$.

S7. $\quad \mathbf{F}(x, y, z)=(x, y, z)$ and S is the portion of the sphere $x^{2}+y^{2}+z^{2}=1$ in the first octant.

Exercises for Colley, Section 7.3

S1. Using Stokes' Theorem, calculate the line integral

$$
\int_{\Gamma} \mathbf{F} \cdot d \mathbf{x}
$$

where $\mathbf{F}(x, y, z)=(2 y, 3 z, x)$ and Γ bounds the triangle with vertices $(0,0,0),(0,2,0),(1,1,1)$.
S2. Suppose that D is the solid triangle consisting of all points which are on the plane with equation $2 x+2 y+z=6$ and in the first octant, and let Γ be the boundary of D parametrized in the counterclockwise sense. Evaluate the line integral

$$
\int_{\Gamma} \mathbf{F} \cdot d \mathbf{x}
$$

where $\mathbf{F}(x, y, z)=\left(-y^{2}, z, x\right)$.
S3. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\left(x^{2} z,-y, x y z\right)$ and S is the boundary of the cube defined by the inequalities $0 \leq x \leq a, 0 \leq y \leq a, 0 \leq z \leq a$; as usual, take the normal to the surface to point outwards.

S4. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\left(z+2 x, x^{3} y,-2 z\right)$ and S is the boundary of the hemisphere defined by the inequalities $x^{2}+y^{2}+z^{2} \leq 1$ and $0 \leq z \leq 1$; as usual, take the normal to the surface to point outwards.

S5. Evaluate the surface integral $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$, where S is the upper hemisphere of the sphere $x^{2}+y^{2}+z^{2}=16$, the vector field $\mathbf{F}(x, y, z)=\left(x^{2}+y-4,3 x y, 2 x z+z^{2}\right)$, and the normal orientation of S is upward.

S6. Suppose that f and g are functions with continuous partial derivatives (defined on a given region). Prove that $\nabla \times(f \nabla g)=(\nabla f) \times(\nabla g)$.

S7. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the unit sphere with the outward normal and $\mathbf{F}(x, y, z)=\left(x^{3}, y^{3}, z^{3}\right)$.

S8. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, wheere S bounds the cylinder defined by $x^{2}+y^{2} \leq 1$ and $0 \leq z \leq 1$, and $\mathbf{F}(x, y, z)=\left(1,1, z\left(x^{2}+y^{2}\right)^{2}\right)$.

S9. Let \mathbf{F} be a vector field defined on all of 3 -space such that $\nabla \cdot \mathbf{F}=0$ and $\nabla \times \mathbf{F}=\mathbf{0}$. Prove that $\mathbf{F}=\nabla g$, where g satisfies $\nabla^{2} g=0$ (in other words, g is harmonic).

S10. Suppose that the vector field \mathbf{F} is defined and has continuous partial derivatives on a region containing the closed surface S and the region W bounded by S, and assume further that the restriction of \mathbf{F} to S is tangent to S at all points of the latter. Prove that $\iiint_{W}(\nabla \cdot \mathbf{F}) d V=0$.

Exercises for Colley, Section 7.4

S1. Let \mathbf{F} be a vector field defined in a region of coordinate 3-space. An integrating factor for \mathbf{F} is a positive valued function λ defined on the region such that λ has continuous partial derivatives and $\lambda \mathbf{F}=\nabla g$ for some function g. Prove that if \mathbf{F} has an integrating factor, then \mathbf{F} and $\nabla \times \mathbf{F}$ are perpendicular to each other. [Hint: What can we say about the curl of $\lambda \mathbf{F}$? Why is the curl of \mathbf{F} equal to $\nabla\left(\log _{e} \lambda\right) \times \mathbf{F}$, and how can one derive the conclusion of the problem from this?

S2. Let \mathbf{F} be the vector field $\mathbf{F}(x, y, z)=(y, z, x)$. Show that there is no integrating factor for \mathbf{F} on the open first octant defined by $x, y, z>0$.

S3. Let $\mathbf{F}=(P, Q, R)$ be a vector field defined on a region of coordinate 3-space, and define the Laplacian $\nabla^{2} \mathbf{F}$ by the coordinate-wise formula $\left(\nabla^{2} P, \nabla^{2} Q, \nabla^{2} R\right.$). As in the case of scalar functions, we shall say that \mathbf{F} is harmonic if $\nabla^{2} \mathbf{F}=\mathbf{0}$. Using Exercise $15(a)$, show that \mathbf{F} is harmonic if both $\nabla \times \mathbf{F}=\mathbf{0}$ and $\nabla \cdot \mathbf{F}=0$.

