A surface area computation

PROBLEM. Find the surface area for the graph of the function $f(x, y)=x y$ defined over the disk D of all (x, y) such that $x^{2}+y^{2} \leq 1$.

The graph of this function is displayed in the following document:
http://math.ucsd.edu/~gptesler/20c/graphs/saddle.jpg

Solution. We have

$$
\frac{\partial f}{\partial x}=y, \quad \frac{\partial f}{\partial y}=x
$$

and if we substitute this into the formula for surface area we obtain the following:

$$
\text { Surface area }=\iint_{D} \sqrt{1+x^{2}+y^{2}} d A
$$

Using polar coordinates we may rewrite this as

$$
\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{1+r^{2}} r d r d \theta=\pi \int_{0}^{1} \sqrt{1+r^{2}} \cdot 2 r d r
$$

and if we make the change of variables $u=r^{2}$ the latter becomes

$$
\pi \int_{0}^{1} \sqrt{1+u} d u=\left.\pi \cdot\left(\frac{2}{3}\right) \cdot(1+u)^{3 / 2}\right|_{0} ^{1}=\frac{2 \pi}{3}(2 \sqrt{2}-1)
$$

