A surface integral computation for a scalar function

PROBLEM. Set up and evaluate the surface integral

$$
\iint_{S} z d S
$$

where S is the upper hemisphere of the unit sphere defined by the equation $x^{2}+y^{2}+z^{2}=1$. The "upper" condition corresponds to the inequality $z \geq 0$.

Solution. We shall use the standard spherical coordinate parametrization

$$
\mathbf{X}(\theta, \phi)=(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)
$$

where $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \frac{1}{2} \pi$. As in a previous file, it follows that $|\mathbf{N}(\theta, \phi)|=\sin \phi$, and therefore (since $z=\cos \phi$) the surface integral is given by the following double/iterated integral:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \cos \phi \sin \phi d \phi d \theta
$$

The latter reduces to

$$
\pi \int_{0}^{\pi / 2} \sin 2 \phi d \phi=\pi
$$

