
Solutions for Sections 7.1 through 7.5  
 

These solutions use material from the Instructor’s Solutions 

Manual are not to be distributed outside of this class!! 

 

 
Section 7.1, p. 417 and following 

 

 
 

Addendum to Exercise 7.1.1.   Find an equation in  x,  y and  z which is satisfied 

by points on the surface. 
 

We have three equations  x  =  u
2
 –  v

2
,  y  =  u + v,  z  =  u

2
 + 3v  in the five variables  x, y, z, u, 

v;  the objective is to derive one nontrivial equation in  x, y, z  by eliminating the two variables  u  

and  v.    

 

More generally, given  p  equations in  q  unknowns where  p  <  q, the idea is to start by using 

one equation to eliminate one variable, obtaining a system of  p – 1  equations in  q – 1  

unknowns, and to continue eliminating variables successively until we obtain a single equation in 

q  –  p  + 1 unknowns. 
 

For the sake of convenience, let’s assume that  y  ≠≠≠≠  0.  In this case we know that  w  =  x/y  is 

equal to  u + v.   Thus we can solve for  u  and  v  in terms of  x  and  y, obtaining the equations 
 

u  =  ½ (y + w)      v  =  ½ (y –  w) . 
 

We can now substitute these values into the formula for  z  to obtain an expression for  z  in terms 

of  x  and  y (strictly speaking, we first obtain a formula in terms of  w  and  y, and then we can 

substitute for  w  to get a formula in terms of  x  and  y).  Here is the formula for  z : 
 

 
 

If we clear the fractions from this equation by multiplying both sides by  4 y
2
, here is what we 

obtain: 



 

 
 

Strictly speaking, we have not addressed the question, “What happens if  y  =  0?”  Usually it is 

all right to ignore such points, but for the sake of completeness we indicate one way to address 

this issue.  —   If we define a new variable  w  =  u + v, then we may write  x  =  yw  and obtain a 

system of three equations in  w, y, z, u, v.  Then we can solve for  u  and  v  in terms of  y  and w 

exactly as before, and using these solutions we can write  z  in terms of   y  and  w  as follows:     
 

 
 

If we multiply both sides of this by  4 y
2
  and use the identity  x  =  yw,  then we obtain the 

previous equation for  4 y
2
z  in terms of   y  and  x.  

 

 
 

4.    

 
 

5.(a)   Here is a sketch of the surface: 

 



 
 

Addendum to Exercise 7.1.5.   Find an equation in  x,  y and  z which is satisfied 

by points on the surface. 
 

Here we have the three equations  x  =  u,  y  =  u
2
 + v,  z  =  v

2
  in the five variables.    We may 

use the substitution in the first equation to conclude that  y  =  x
2
 + v  or equivalently  y – x

2
  =  v.  

Finally, we may substitute this into the third equation to conclude that    
 

z   =   (y – x
2)2

. 

 

 
 
21.  Here are some drawings that might be helpful: 

 

 
 

(Source:  http://www.puzzles.com/puzzleplayground/HoleInTheSphere/HoleInTheSphere.htm ) 
 

[Disregard the number 6 in the cross – sectional view.] 



Here is the solution with a more “mathematical” drawing. 

 

 
 

 
 

 
 

 
Section 7.2, p. 438 and following 

 

 



 

 

 

 

 



 

 

15.   Note.  The example in the lectures was slightly different from the problem in the text; in 

the lectures, the equation for the lateral surface was   x
2
 + y

2
  =  4, and as a result the final answer 

below is different from the answer for the problem in the lectures. 

 

 

 
Section 7.3, p. 453 and following 

 

 



 

 

14.   The following hint appeared on the assignment sheet:   Reduce the problem to finding 

the corresponding surface integral over the disk  D  defined by  z  =  1  and 0   ≤   x
2
  +  y

2
   ≤   1, 

and evaluate the surface integral over  D. 



The key point in the reduction is that the union of  D  and  the original surface S  bounds a region 

V  in space such that the divergence of F is zero throughout V.   By the Divergence Theorem, 

this implies that the difference of the surface integrals  Int(S) – Int(D)  must be zero, where both  

S  and  D  have the upward orientation (note that the orientation which  D  inherits as the 

outward normal to V  is the downward orientation, and this is why a negative sign arises).  

Therefore we know that Int(S) = Int(D), and consequently it is enough to compute Int(D). 

 

 
 

The next exercise uses the Differentiation Principle stated in the comments to Section 7.4 (see 

the file  http://math.ucr.edu/~res/math10B/comments0704.pdf ).  Specifically, if we are given two 

functions  p  and  q  defined on a region  W  such that the integrals of  p  and  q  over every 

“nice” closed region in W are equal, then   p  =  q.   

 

 
 

 

 
Section 7.4, p. 467 and following 

 

Note.  The result below plays an important role in the derivation of wave motion equations in 

the theory of electromagnetism (see part (b) of this problem on page 468). 
 

 



 

 

 

 
Section 7.5, p. 469 and following 

 

 

2.   False.   All points of the form  X(s, t)  lie on the given plane, but if a point can be written 

as  X(s, t)  for some  s  and  t, then its y – coordinate must be at least 3  because the latter is equal 

to  s
2
 + 3.   Since the point  ( – 1, 0, – 7)  lies on this plane, it follows that the plane has at least 

one point (and, in fact, infinitely many points) which does not have the form  X(s, t)  for some 

values of  s  and  t. 

 

4.   False.   The standard normal is zero when  s  =  0  or  t  =  0.   

 

8.   True.   The integrand is an odd function of x, y, and z  —  in other words, we have the 

identity   f ( – x, – y, – z)   =   – f (x, y, z)  —  and furthermore the region is symmetric with 

respect to the antipodal map sending a vector v to its negative  – v.  Under these circumstances 

we know that the integral of  f  over the given region must be equal to zero.  

 

22.   False.   By Stokes’ Theorem, the surface integral is equal to the line integral of the vector 

field  F  over the boundary curve.  Therefore the surface integral of the curl of  F  is equal to the 

line integral of the length  |F|  over  the boundary curve.  The only way this integral can be 



zero is if  |F| =  0  everywhere, or equivalently if and only if  F  =  0.  Clearly there are many 

situations in which this condition is not met. 

 

24.   True.   By the Divergence Theorem, the triple integral is equal to the flux (surface) 

integral of   F  over the boundary surface.  If this vector field is tangent to the boundary 

everywhere, then its dot product with the normal vector is always zero, and therefore the 

integrand of the surface integral is equal to zero, so that the surface integral itself must also be 

zero. 

 

 

 
 


