Solutions for Sections 7.1 through 7.5

These solutions use material from the Instructor’s Solutions
Manual are not to be distributed outside of this class!!

Section 7.1, p. 417 and following

1. (a) To find a normal vector we calculate

To(s,0) = (25,1,25) so Tg(2,—1)=(41,4)
Ti(s,t) = (~21,1,3) so Ty(2,-1)=(2.1,3).

Then a normal vector is
N(2, -1) = T2, 1) X T, (2, -1) = (~1, ~4,2).
(b) We find an equation for the tangent plane using
0=N(2,~1) (x - 3 L,1)=(-1,-42) (x -~ (3. L1))=~-x +3 ~ 4y + 4 + 2z — 2

This is equivalent to x + 4y — 2z = 5.

Addendum to Exercise 7.1.1. Find an equation in x, y and z which is satisfied
by points on the surface.

We have three equations x = u? - vz, y=u+v,z = u* + 3v in the five variables X,Y,2, U,
v; the objective is to derive one nontrivial equation in x,y,z by eliminating the two variables u
and v.

More generally, given p equations in ¢ unknowns where p < ¢, the idea is to start by using
one equation to eliminate one variable, obtaining a system of p —1 equations in g —1
unknowns, and to continue eliminating variables successively until we obtain a single equation in
q — p + 1 unknowns.

For the sake of convenience, let’s assume that y # 0. In this case we know that w = x[y is
equal to u +v. Thus we can solve for # and v interms of x and y, obtaining the equations

u="y+w) v=Vy-w.

We can now substitute these values into the formula for z to obtain an expression for z in terms
of x and y (strictly speaking, we first obtain a formula in terms of w and y, and then we can
substitute for w to get a formula in terms of x and y). Here is the formula for z:

x> x  y* 3y 3x
—— ot
4y? 2 4 2 2y

If we clear the fractions from this equation by multiplying both sides by 4 y2, here is what we
obtain:



4y*z = x* + 2xy* + y* + 6y’ — 6xy

Strictly speaking, we have not addressed the question, “What happens if y = 0?77 Usually it is
all right to ignore such points, but for the sake of completeness we indicate one way to address
this issue. — If we define a new variable w = u + v, then we may write x = yw and obtain a
system of three equations in w,y, z, u, v. Then we can solve for # and v in terms of y and w
exactly as before, and using these solutions we can write z interms of y and w as follows:

2 2
w yw y 3y 3w
z = — 4+ — 4+ —+ — - —
4 2 4 2 2
If we multiply both sides of this by 4 y2 and use the identity x = yw, then we obtain the
previous equation for 4 y*%z interms of y and x.

2. First we figure that since 2sin¢ = 1, either # = #/6 or 57/6. Since 2cos¢ < 0 we know that ¢ = S#/6. Then we
can see that sins = +/2/2 so s = /4. Next, find a normal vector to the surface at the given point by calculating

Ti(s,¢) = (—{5 + 2cost)sins, (5 + 2cost)coss, 0) and
Ti(s,¢) = (—2sinrcoss, —2sintsins, 2cosz)  s0

N(s,t) = Tsls, 1) X Ty(s, 1) = 2(5 + 2cost){cosscoss sinscoss,sinz).  Therefore,

N(m/4,57/6) = —‘@-—\/—;—3(«@, B, - 3).

We calculate an equation for the tangent plane by writing N - {(x — {xp, 0. 20)) = 0 or, equivalently in this case,

0= (/3 3, ~v2) (x—(%,%—z—éj)) or V3x + A3y — V27 = 546 — 442,

(¢} Note that the x-component of X is 5% cost and the j}—comlﬁonent is 52 sin ¢ and the z-}:omponent is a function
of 5. We can eliminate the ¢ by looking at x2 + y*. So without much work we have found that an equation
for the image of X is x* + y* — z* = 0.

5.(a) Here is a sketch of the surface:




(b} To determine whether the surface is smooth we need to caleulate N. First, Ts(s, 1) = {1,25,0), ara.d
T(s,t) = (0,1,2)s0 N = T; X T, = (4st, ~21, 1}. We conclude that N # 0 for any (s, ) so N is

Smooth. .
(€ M (5,8 + ,2)=(1,01),thens=landr=~1.SoN(l, ~1) = {—4,2,1) and an equation of the

tangent plane at this point is (—4,2,1) « (x — (1,0,1}) = 0 or more simply, 4x ~ 2y —z= 3.\ )

Addendum to Exercise 7.1.5. Find an equation in x, y and z which is satisfied
by points on the surface.

Here we have the three equations x = u, y = u*+v, z = v* in the five variables. We may
use the substitution in the first equation to conclude that y = x*+v or equivalently y — xr =y
Finally, we may substitute this into the third equation to conclude that

z = (y=x»i

12. (a) gi(i, ~1) = ‘(.1, —1,—1) and we have Ty = (35%,0,#), T, = (0,3*,s). Hence the normal at (I, ~1,
—1)—whichis when s = 1,1 = —1—is N(1, 1) = Te(1, = 1) X T, (1, 1} = (3,0, ~ 1) X (0,3, =
(3, ~3,9). So an equation for the tangent piane is

Hxr - D) =3y + 1)+ e+ 1)=0 or x—y+3z=-1

(b) In general we have that the standard normal is given by

i § k
N(s,0) =Te X Ty = | 32 0 1 |=(-35 -3 082)
0 3 5

Note that N = 0 when's = £ = 0, i.e., at (0, 0, 0). So the surface fails to be smooth there.

21. Here are some drawings that might be helpful:

Cross section

Top view

@ 2002 ThinkFun Inc.

(Source: http://www.puzzles.com/puzzleplayground/HoleInTheSphere/HoleInTheSphere.htm )

[Disregard the number 6 in the cross — sectional view.]



Here is the solution with a more “mathematical” drawing.

21, A quick look at the figure below shows a cutaway of a quarter of the xz-plane intersection of the cylindrical hole

of radius b bored in a sphere of radius a. The height of the hole is 2+ a? — b2 The top half of the ring is the
region swept out by the portion of the diagram containing the letter ",

z

If X(5,2) = (asinscosz,asinssint, acoss), then T;(s,7) = {acosscost, acosssing, —asins), Fils, 1)

(—asinssing, asinscost, 0), Ty(s, 1) X Ty(s,2) = a?sins(sinscost, sinssing, coss) and || Ti(s,£) X
T,(s,t)| = a’sins. Notice that the angle s made with the z-axis has lower limit cos™!(k/a) =
cos™! (/g2 ~ b%/a) and upper limit 7r/2. So the surface area is
27 pf2 2 Y]
zf f & sinsdsd = 2[ 2 ML B 4t = amaa ~ B
0 Jeosm (Vb a) 0 a

22. The parametrization of the paréboioid is X(s,1) = (scost,ssinf, 9 — 32) where 0=t =27 and 0= s =3 So
Ty(s,t) = (cost,sint, ~2s), Ty(s, £} = (—ssinz, scost,0), Ts(s,t) ¥ Tels,1) = {252 cost, 2s% sinf, 5), and
1T (s5, ) % Te(s, )l = s+/4s*> + 1. The surface area is then

27 3 27
f / sVds? + 1dsdt = 1}-2-[ (1 + 452)”2]]34::—- %(373/2 - 1)
[} 8 0

Section 7.2, p. 438 and following

2. (a) Since X{s,£) = (s + £,8 — 1,5}, we can calculate To(s, ) = (1,1,6), Ty(s,1) = (1, =L, 5),N(s,1) =

Tols, £) X s, 8} = (s + 1,0 ~ 5, —2), and N(s. 2}{| = V252 + 242 4+ 4, Using polar coordinates in
the double integral, we obfain

Jiees

i

7/2 1
ffwzﬁ + 2% + ddsdt w':f f 4r 22 + ddrdd
n 9 0

/2
3[ (676 — 81d0 = T16~/6 — 8I.
349 3



(b) By Definition 2.2, [/F ds = f/F(X(s t)) « N{s,t)dsdr. Here F(X(s,2)) = (s + t,5 — 1, st) and

so, from part {a), we know that N(s, 1) = (s + £, — 5, —2), This means that I - N = (s + 6?2 — (s —
£)? - 2st = 2st. Therefore,

/[F ds = //Zstdsdz fflr’z!stdsdt
m]( md;w[(r~ Yt = (_;‘%);

4. (a) You can easily verify that both X and ¥ parametrize the surface z = 1% + 3y for 0= 42 + ¥ = 4. The
major difference is that X covers the surface once while ¥ covers the surface twice,
(b} For X, the standard normal N is

(cost,sint, 6s) X (—ssint, scos?,0) = (—6s7cost, —6s7sint, 5)

50

29 p2
f (yi — xj + k) - dS =f f (ssin#, ~scost, 0t} - (~65%cost, ~6s%sint, s) dsdt
X 0 0
2

2 p2 2 956 2
mf f 9s5d5dt=f 2| de = 964z = 192
0o Jo o 6l 0

For Y, the standard normal N is

(2cost, 2sint, 245) X { —2ssint, 2scost,0) = (~—48s% cost, —48s% sint, 4s)

A4 pl
/ (yi — xj + k) - dS =[ f {2ssint, —25cost, 1445%) - (~48¢% cost, —~4Bs* sint, 48 ) ds dt
¥

dar
f f576s dsdt = [ 5765

As noted in part (a), the integrai over Y should be twice the integral over X since they both parametrize the
same space but ¥ covers the space twice.

f 96dt = 384w,

8. {a) The sphere is symmetric about the plane x = 0. Hence de = {) as for each small piece of the sphere

with coordinate x > 0 (and x == a), there is a corresponding plece with coordinate x < 0. Hence contributions

in an appropriate Riemann sum will cancel.
x o+ oyi + ok
a

fir o e -
e o )

since each surface integral is zero via reasoning as in part (a).

(b) For 2+ y2 + 7% = 2 the outward unit normal is given by n = . Thus
2 Y

In Exercises 10-13 we use Definition 2.1: //de = f FIX (s, :)))IN(s, r)li dsdi. And we’ll break down the
X D

integral as ]/ m/] “+ /f + //
8 5 52 S48y
25 pd Im 3 27 03
10. ffzdS :f f 3tdeds + f f Odtds + [ f didrds = 48w + 36w = 84w,
s 0 9 0 0 0 0



14.
4 o2
f/(xi + ¥i) - dS=f f {3coss,3sins,0) - (3coss, 3sins, §)dsdt
$ 0 J0
3 plw 3 plor
+ fo {tcoss, rsing, 0) - (0,0, —¢)dsdt + f ] (tcoss, tsing, 0) - (0,0,¢)dsdr
0 o Jo

4 p2ar
= f Qdsdt = T2ar.
0 J0

A different approach would be to observe that as the unit normals for 5, and Sz are tk then F - n = O on §;
and Ss. On §) the unit normat is (xi + yi)/3 So F - n = (¥ + y*)/3 = 9/3 = 3. Therefore we obtain,

F - ndS = 3(area of 8)) = 3{2mw(3)(4)) = 72w
b

15. Note. The example in the lectures was slightly different from the problem in the text; in
the lectures, the equation for the lateral surface was X+ y2 = 4, and as a result the final answer
below is different from the answer for the problem in the lectures.

4 e 3 pla
f/(zk) - dS :f f (0,0,¢) - (3coss,3sins, 0) dsdr + f / (0,0,0) + (0,0, —t)dsdt
§ o Jo o Jo

3 3 2w 3
+ f f (0.0,4) - (0,6,1r)dsdr =f f 4t ds dt ﬂ[ 8wrdr = 36w
o Jo o Jo 0

A different approach would have been to notice that, since the unit normal vector to the lateral surface Sy has no

k component, zk - d8 = 0. Also,z = 0 on §; s0 zk + dS = 0. Rinally, z = 4 on S3 and therefore
S] S?.

/fz;pdsm/fzk : ds=//4k . de=f/4dS:4 - (area of §3) = 4{#3%) = 36m.
S Sy 54 S

18.
4 plr
/](xzi) - ds =/ f {9cos®5,0,0) - (3coss, 3sins, 0)dsdr
$ 0 J0

3 i 3 62
+ f (Poos’s,0,0) - (0,0, ~r)dsdr + f f (£ cos?5,0,0) - (0,0, 1) dsdt
0 J¢ QO Jo

4 2 4 p2w 4 2ar
= 27[ f cos® s ds dt = 27] [ (1 — sin®s)cossdsdr = 27[ [sins — (sin®§)/3]] de=0.
o J0 0 Y0 0 1]

Section 7.3, p. 453 and following

2. §is a helicold. We begin by caleulating

i j k
YxF=|a/ox 8/oy &/ez |=1+]+k
b4 x ¥



We calculated a normal vector in Exercise 20 of Section 7.1: N = (sinz, — cos t.s). So,

f/v X F - dS =ff(i +§ + K) - {sinfi — costj + sk)drds
48 D

1 pmf2 .
mf [ (sint — cost + s)dtdsr—*f — 5 dy
o Jo 0 2

-
- §
4

T
o 4
On the other hand, 8§ consists of four pieces which we parametrize by x1(s) = (5,0,0) for0 =5 =1, x2(t) =
(cost,sint, 1) for 0 = r = w2, x3(s) = (0,1 - s,7f2) for 0 = s = 1, and x4(1) = (0,0,w/2 — 1) for
0= = w/2 Then,

1 )2 '
F-ds= f (0,5,0) - {1,0,0)ds + f {t,cost,sint} - (—sint,cost, 1)dr
a8 0 0

1 w/2
+ f (#/2,0,1 — s) - (0,“1,0)6&' + f (72 - ,0,0} - (0,0, ~1)dt
0 O

1 w2 1 w2
f Ods + / (—tsinr + cos?t + sint}dt + / Ods + f Odr
[ 0 [\ &3

m

4

i

These two answers agree.

8 Note that V - ¥ = 2x + 250

/[/V-FdV“—"—"Z/]](x + 1)dv
] J4ID
2 WG x? 5
= 2[ f [ (x + 1)dzdydx
O N s R S

2 pVA-xl R )
m?,fozfﬁm{(x + 1)(4 — x* — y )ldydx
g [* 8
= 3[J(x + 14 - 52 dx = 5(671') = 16m.

On the other hand, the boundary of D can be split into two pieces: the flat top piece S and the surface of
the paraboloid 5. A parametrization of Sy is Xi(s, ¢} = (fcos s,tsing,3) for 0 =s = 2mand 0 =t = 2,
Then a normal vector is Ni(s, £} = {0,0,¢). A parametrization of S is Xa(s,1) = (revss, rsins, £ 4+ 1) for
0<s=2mand 0=t = 2. Then a normal vector is No(s,2) = (2% coss, 2% sins, ~t). So,

ﬁF'dST—“//F'dS‘P/fF*dS
5 5 S
2 2 '
=[ [(t:zcoszs,tsins, 5) - (0,0,¢)drds
. 0o Jo

20 p2
+ f / (Fooss, tsins, 2 + 1) - (2 coss, 2% sing, — 1) de ds
0 0 ’
2 2 2
w[ [ (260 cos®s + 20¢in?s — £ + 4r) =f
o Jo 0

These two answers agree.

8 — 4c052s| ds = 16m.

3
+ 64cos” s
5

14. The following hint appeared on the assignment sheet: Reduce the problem to finding

the corresponding surface integral over the disk D definedby z = 1 and0 < x* + y* < 1,
and evaluate the surface integral over D.




The key point in the reduction is that the union of D and the original surface S bounds a region
V in space such that the divergence of F is zero throughout V. By the Divergence Theorem,
this implies that the difference of the surface integrals Int(S) — Int(D) must be zero, where both
S and D have the upward orientation (note that the orientation which D inherits as the
outward normal to V is the downward orientation, and this is why a negative sign arises).
Therefore we know that Int(S) = Int(D), and consequently it is enough to compute Int(D).

14. § is the portion of the “bell” surface for which z = e~ and 7 = 1. Take §) to be thfa dis‘k in the _plane-
z = 1 bounded by the circle 2 4 y? = 1. Then SU Sz is the boundary of a solid V. § is oriented with an
upward pointing normal and $3 is oriented with a downward pointing nermal.

V- -F=0 so [/V-FdV*O.
v

//F . dSzf {x,y,2 — 2z) - (0,0,-l}dS"«"/ (22 — 2}dS.
S 5 8
But along Sz,z = 1,50]/(2z - Z)dS"-—"//(Z -~ 2)dS = 0. S0
Sa Sz
f/F-dSm[/fV-FdV—ffF-dS=O—O=O.
s v 52

The next exercise uses the Differentiation Principle stated in the comments to Section 7.4 (see
the file http:/math.ucr.edu/~res/math10B/comments0704.pdf). Specifically, if we are given two
functions p and q defined on aregion W such that the integrals of p and g over every
“nice” closed region in W are equal, then p = q.

Also,

20. By Gauss’s Theorem, f[[V - (VAYV = ﬂ (V#) - dS. Here the boundary of D consists of finitely many
D ap

piecewise smooth, closed orientable surfaces S;. By assumption, (Vf)-dS = Oandso ,[// V- (Vi)dv =0
a8; b

TN,

This is true for any solid D, so V - (V) = 0. As we saw ealier in the text V - (Vf) = ¥ Y Py

So f is harmonic.

Section 7.4, p. 467 and following

Note. The result below plays an important role in the derivation of wave motion equations in
the theory of electromagnetism (see part (b) of this problem on page 468).

15. {a) This is just a straightforward calculation. Write F = Mi + Nj + Pk Then
i i k

VXF=1g/ox 8/ay 8/oz | = (Py — NJi + (M — P)i + (Nx — My)k
1M N P

and



. . K
VX (VXF)= a/lax a/JBy 3/0z
Py - N, M, = P. Ne~ My
= (Ny — My, — My + Pyli + (Pye — Npp — Nyx + My i
+ (Mg ~ P — Py + Ny)k.
On the other hand,

V(V-F)=V{M; + Ny, + F;)
= (My + Nyy + Pl + (Myy + Ny + sz)j + (My, + Ny, + P, )k
and {V - V)Fﬁ—"(ﬁ% + a%;- + %)F
= (Myx + My + My)i + (N + Ny + Np)i + (P + Py + Pk
Hence, V(V - F) — V2B = (Nyy + Ppe — My, — Mg)i + (My + Poy — Nuo — Nyl
+ My + Ny = P — Pyk

By assumption F is of class C? and so the mixed partials are equal; thus we have the resalt:

VX (VXF)=V(V F)- VF

Section 7.5, p. 469 and following

2. False. All points of the form X(s, ¢) lie on the given plane, but if a point can be written
as X(s,?) forsome s and ¢, then its y — coordinate must be at least 3 because the latter is equal
to s*+3. Since the point (-1, 0,—7) lies on this plane, it follows that the plane has at least
one point (and, in fact, infinitely many points) which does not have the form X(s, #) for some
values of s and ¢.

4. False. The standard normal is zero when s = 0 or ¢ = 0.

8. True. The integrand is an odd function of x, y, and z — in other words, we have the
identity f(-x,-y,—-2) = —-f(x,y,27) — and furthermore the region is symmetric with
respect to the antipodal map sending a vector v to its negative — v. Under these circumstances
we know that the integral of f over the given region must be equal to zero.

22. False. By Stokes’ Theorem, the surface integral is equal to the line integral of the vector
field F over the boundary curve. Therefore the surface integral of the curl of F is equal to the
line integral of the length |F| over the boundary curve. The only way this integral can be



zeroisif |F| = 0 everywhere, or equivalently if and only if F = 0. Clearly there are many
situations in which this condition is not met.

24. True. By the Divergence Theorem, the triple integral is equal to the flux (surface)
integral of F over the boundary surface. If this vector field is tangent to the boundary
everywhere, then its dot product with the normal vector is always zero, and therefore the
integrand of the surface integral is equal to zero, so that the surface integral itself must also be
Zero.



