UPDATED GENERAL INFORMATION - FEBRUARY 18, 2017

The second in-class examination

The second in-class examination has been postponed to Friday, February 24. It will cover the material from Section 6C through Section 7C. Three basic aspects of the subject are particularly important; namely, working examples, correctly formulating the basic definitions and key results, and doing simple proofs and derivations (if an argumment takes more than about a third of a page, it is safe to assume it will not appear on the examination).

Aside from the previously recommended exercises, here are a few further problems worth considering:

1. Let V be a finite dimensional inner product space, and let $E: V \rightarrow V$ denote orthogonal (perpendicular) projection onto a subspace W.
(a) Show that $E^{2}=E$ and E is self-adjoint.
(b) Suppose that E_{1} and E_{2} are orthogonal projctions onto W_{1} and W_{2} satisfying $E_{1} E_{2}=E_{2} E_{1}$. Prove that the latter defines perpendicular projection onto $W_{1} \cap W_{2}$.
2. Let V be a finite dimensional inner product space, and let $T: V \rightarrow V$ be a linear transformation. Prove that T is invertible if and only if its adjoint T^{*} is invertible.
3. Let V be a finite dimensional real inner product space. A linear transformation $T: V \rightarrow V$ is said to be conformal if it preserves the (cosines of) angles between nonzero vectors; i.e., if \mathbf{x} and \mathbf{y} are nonzero vectors then (the cosine of) the angle between \mathbf{x} and \mathbf{y} is equal to (the cosine of) the angle between $T(\mathbf{x})$ and $T(\mathbf{y})$. One can prove that T is conformal if and only if $T=r S$, where $r \neq 0$ and S is orthogonal; you may assume this.
(a) Show that the product of two conformal linear transformations on V is conformal, and the inverse of a conformal linear transformation is also conformal.
(b) Show that a conformal linear transformation is normal.
4. For $k=0, \ldots, 10$ determine whether the symmetric matrix

$$
\left(\begin{array}{ll}
2 & 4 \\
4 & k
\end{array}\right)
$$

is positive definite, positive semidefinite but not positive definite, or neither.
5. If α and β are the minimum and maximum eigenvalues of a real symmetric matrix A, use diagonalization to show that the Rayleigh quotient

$$
\alpha \leq \frac{\langle A x, x\rangle}{\langle x, x\rangle} \leq \beta
$$

for all nonzero vectors x, and that the extreme values are realized for eigenvectors of A.
6. Results from Chapter 10 will show that the symmetric 3×3 matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)
$$

is positive definite. Applying the inequalities in the previous exercise with $x=(1,1,1)$, find a lower estimate for the largest eigenvalue of A.

Note. One can find an upper estimate for the smallest eigenvalue by doing a similar calculation with A^{-1} replacing A; recall that A^{-1} is symmetric if A is symmetric.

