UPDATED GENERAL INFORMATION - MAY 23, 2018

More for the third quiz

In the third problem, there might be some confusion about raising a matrix to the power $(k+p) / p$ if the latter is not an integer. Here is a clarification: Show that the index of nipotency is p / k if k evenly divides p (no integral remainder) and is $[p / k]+1$ if k does not evenly divide p; here $[x]$ denotes the largest integer m such that $m \leq x$.

Here is one more problem which is definitely worth considering for tomorrow's quiz.
5. Suppose that A and B are nilpotent $n \times n$ matrices such that $A B=B A$, and assume that $A^{2}=B^{2}=0$. Prove that $A+B$ is nilpotent and in fact $(A+B)^{3}=0$. [Hint: Since A and B commute, one can use the Binomial Theorem to expand $(A+B)^{k}$ if k is a positive integer.]

