UPDATED GENERAL INFORMATION - MARCH 10, 2017

Office hours for next week

Once again it will be necessary to change office hours. For next week, office hours will be from 10:30 to 11:30 on Tuesday.

The third in-class examination

As previously announced, this will take place on Wednesday, March 8. It will cover material in Chapters 8 and 10 in the text, with modifications as in the online notes, and it will consist of four problems.

Here are a few practice problems, in addition to the assignments already posted, which contain numerous other computational exercises.

1. Axler, Exercise 10A.9.
2. Axler, Exercise 10A.13.
3. Let A be an $n \times n$ matrix over \mathbb{R} such that $A^{2}=I$, and let V_{+}and V_{-}be the subspaces spanned by the eigenvectors for 1 and -1 respectively. Prove that V is the direct sum (zero intersection) of V_{+}and V_{-}by considering the images of $\frac{1}{2}(I+T)$ and $\frac{1}{2}(I-T)$. Explain why this implies the identity $\operatorname{trace}(A)=\operatorname{dim} V_{+}-\operatorname{dim} V_{-}$. Prove that
4. Let λ be a nonzero scalar, and let A be the elementary Jordan matrix

$$
\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right)
$$

Explain why A^{3} is not in Jordan form, and find the Jordan form for A^{3}.
5. Suppose that A is a 4×4 matrix with positive determinant. Explain why the determinant of $-A$ is also positive.
6. Find the determinant of the following matrix:

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 6 & 1 & 0 & 0 \\
0 & 7 & 8 & 1 & 0 \\
0 & 9 & 1 & 1 & 0 \\
5 & 4 & 3 & 2 & 1
\end{array}\right)
$$

7. Find the characteristic polynomials of the following matrices:

$$
\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 1 & 0 \\
4 & 2 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
2 & 0 & 0 \\
-2 & -2 & 2 \\
5 & -10 & 7
\end{array}\right)
$$

8. Show that the following real symmetric, positive definite matrix has no rational eigenvalues:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)
$$

You may use without proof the following result due to C. F. Gauss: Suppose that the polynomial

$$
a_{n} z^{n}+\cdots+a_{1} z=a_{0} \quad\left(a_{n} \neq 0\right)
$$

has integer coefficients, and it also has a rational root p / q, where p and q are integers with $q \neq 0$. Then q (evenly) divides a_{n} and p (evenly) divides a_{0}. Why does this reduce the search for rational roots to a finite number of possibilities? To conclude, it suffices to verify that none of these rational numbers p / q of this type can be a root of the original polynomial.
9. Suppose that the 4×4 matrix A has two eigenvalues, namely 2 and 3 , such that the spaces spanned by eigenvectors for 2 and 3 are both 1-dimensional. Find all possible Jordan forms for A.
10. Suppose that the minimal polynomial of a 4×4 matrix is z^{2}. Find all possible Jordan forms for A.

