UPDATED GENERAL INFORMATION - JUNE 4, 2018

Practice problems for the second exam

Here are a few beyond the usual sources:

1. Let V be a finite dimensional inner product space, let $T: V \rightarrow V$ be a normal linear transformation, and let a, b, c be scalars. Prove that $a T^{2}+b T+c I$ is also normal.
2. Suppose that A is a symmetric 2×2 matrix over the reals such that $\operatorname{det} A>0$ and $\operatorname{tr} A>0$. Explain why A has only positive real eigenvalues. Give examples to show this fails for 3×3 matrices which are symmetric and 2×2 matrices which are not symmetric.
3. Find all Jordan forms for 6×6 matrices with minimal polynomial $\left(t^{2}-4\right)^{2}$.
4. A linear transformation $T: V \rightarrow V$ on a vector space is said to be an involution if $T^{2}=I$. Since our scalars are real or complex numbers, it follows that V is a direct sum of the eigenspaces $V_{ \pm}$of ± 1. If V a finite dimensional inner product space, show that T is self adjoint if and only if these two eigenspaces are orthogonal complements of each other.
5. Find the determinant of the following 4×4 matrix:

$$
\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

6. Prove that a symmetric nilpotent matrix over the real numbers must be the zero matrix.
7. Find the eigenvalues of the following 3×3 matrix:

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

8. Let A be a real 2×2 matrix. Prove that A does not have a basis of eigenvectors over either the real or complex numbers if and only if A is not a multiple of the identity matrix and $(\operatorname{tr} A)^{2}=4 \operatorname{det} A$.
