Mathematics 132, Winter 2017, Examination 1

Answer Key

1. [25 points] Find an eigenvector for the largest real eigenvalue of the following matrix:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

SOLUTION

The eigenvectors are given by the diagonal entries, so 3 is the largest eigenvalue. Therefore, if A is the matrix displayed above, then the eigenvectors for the eigenvalue 3 are the nonzero vectors in the null space of

$$
A-3 I=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

In other words, they are the nontrivial solutions to the equations $-2 x+y+z=0$ and $-y+z=0$. The leading entries are in the first and second column, so there is a $1-$ dimensional solution space generated by a vector with $z=1$ and the other entries dictated by the equations: This means that $y=1$ and $x=1$; to summarize, the eigenvectors are the nonzero multiples of $(1,1,1)$
2. [25 points] Suppose that V is a vector space over the real or complex numbers and $S, T: V \rightarrow V$ are linear transformations such that $S T=T S$. If c is an eigenvalue of T and W is the subspace consisting of zero and the eigenvectors for c, prove that S maps W into itself (in other words, W is invariant under S).

SOLUTION

We need to show that if $T(v)=c v$ then $T(S v)=c S v$. This follows because $T S v=$ $S T v=S c v=c S v .$.
3. [25 points] Let $W \subset \mathbb{R}^{3}$ be the subspace spanned by $(1,1,0)$ and $(-1,1,2)$. Express the vector $(1,0,1)$ as a $\operatorname{sum} \mathbf{x}+\mathbf{y}$, where $\mathbf{x} \in W$ and \mathbf{y} is perpendicular (= orthogonal) to W

SOLUTION

Let $\mathbf{v}=(1,0,1)$, and let \mathbf{w}_{1} and \mathbf{w}_{2} be the vectors $(1,1,0)$ and $(-1,1,2)$ respectively. Note that \mathbf{w}_{1} and \mathbf{w}_{2} are orthogonal, so there is no need to use the Gram-Schmidt process to find an orthogonal basis for W (we already have one!).

The vector \mathbf{x} is then given by

$$
\frac{\left\langle\mathbf{v}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{\mathbf{1}}+\frac{\left\langle\mathbf{v}, \mathbf{w}_{2}\right\rangle}{\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle} \mathbf{w}_{\mathbf{2}} .
$$

If we substitute the numerical values

$$
\left\langle\mathbf{v}, \mathbf{w}_{1}\right\rangle=1, \quad\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle=2, \quad\left\langle\mathbf{v}, \mathbf{w}_{2}\right\rangle=1, \quad\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle=6
$$

into the preceding formula, we see that

$$
\mathbf{x}=\frac{1}{2} \cdot(1,1,0)+\frac{1}{6} \cdot(-1,1,2)=\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right)
$$

and therefore

$$
\mathbf{y}=\mathbf{v}-\mathbf{x}=\left(\frac{2}{3},-\frac{2}{3}, \frac{2}{3}\right)
$$

4. [25 points] (a) Find the complex inner product of the vectors $(1,1+i)$ and $(1,1-i)$.
(b) Prove the parallelogram identity for real inner product spaces:

$$
|\mathbf{x}+\mathbf{y}|^{2}+|\mathbf{x}-\mathbf{y}|^{2}=2 \cdot\left(|\mathbf{x}|^{2}+|\mathbf{y}|^{2}\right)
$$

SOLUTION

(a) The inner product is equal to

$$
1 \cdot 1+(1+i) \cdot \overline{(1-i)}=1+(1+i)^{2}=2+2 i-1=1+2 i
$$

(b) We can use the "binomial formula" to express the left hand side as

$$
\left(|\mathbf{x}|^{2}+2\langle\mathbf{x}, \mathbf{y}\rangle+|\mathbf{y}|^{2}\right)+\left(|\mathbf{x}|^{2}-2\langle\mathbf{x}, \mathbf{y}\rangle+|\mathbf{y}|^{2}\right)
$$

which simplifies to $2 \cdot\left(|\mathbf{x}|^{2}+|\mathbf{y}|^{2}\right)$, which is the right hand side..

