Mathematics 132, Winter 2017, Examination 3

Answer Key

1. [30 points] (a) Let A be an $n \times n$ matrix, and let P be an invertible $n \times n$ matrix. Prove that $\left(P A P^{-1}\right)^{3}=P A^{3} P^{-1}$.
(b) Suppose that N is a nilpotent 4×4 matrix with minimal polynomial z^{2}. Find all possible Jordan forms for N.

SOLUTION

(a) We have

$$
\left(P A P^{-1}\right)^{3}=P A P^{-1} P A P^{-1} P A P^{-1}
$$

and if we cancel all copies of $P^{-1} P=I$ in this expression we get $P A A A P^{-1}=P A^{3} P^{-1} . \square$
(b) The Jordan form is a block sum of $k_{i} \times k_{i}$ elementary nilpotent Jordan submatrices, with at least one 2×2 submatrix since the minimal polynomial is z^{2}, no larger submatrices, and the sum of the sizes of the matrices equals 4 . The only possibilities consistent with these constraints on the sizes are $2+2$ and $2+1+1$.
2. [25 points] Let $\lambda \neq 0$ be a scalar, and let A be the elementary Jordan matrix

$$
\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)
$$

Explain why A^{2} is not in Jordan form, find the Jordan form for A^{2}, and justify your answer.

SOLUTION

Write $A=\lambda I+N$, where N is the matrix

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

Then $A^{2}=\lambda^{2} I+2 \lambda N+N^{2}$, which equals

$$
\left(\begin{array}{ccc}
\lambda^{2} & 2 \lambda & 1 \\
0 & \lambda^{2} & 2 \lambda \\
0 & 0 & \lambda^{2}
\end{array}\right)
$$

This matrix is not in Jordan form because its $(1,3)$ entry is nonzero. To find its Jordan form, we need to write $A^{2}=\lambda^{2} I+N_{2}$, where N_{2} is the matrix

$$
\left(\begin{array}{ccc}
0 & 2 \lambda & 1 \\
0 & 0 & 2 \lambda \\
0 & 0 & 0
\end{array}\right) .
$$

This nilpotent matrix satisfies $N_{2}^{2} \neq 0$, so there is a basis x_{1}, x_{2}, x_{3} such that $N_{2} x_{1}=x_{2}$, $N_{2} x_{2}=x_{3}$ and $N_{2} x_{3}=0$. Therefore the Jordan form of A^{2} is equal to

$$
\left(\begin{array}{ccc}
\lambda^{2} & 1 & 0 \\
0 & \lambda^{2} & 1 \\
0 & 0 & \lambda^{2}
\end{array}\right)
$$

3. [20 points] (a) For some $n \geq 2$, find an $n \times n$ matrix A such that trace $\left(A^{-1}\right) \neq$ $(\operatorname{trace} A)^{-1}$.
(b) Let A be a 6×6 matrix such that $\operatorname{det} A>0$. Explain why $\operatorname{det}(-A)>0$ is also true.

SOLUTION

(a) One way to solve this is to focus on diagonal matrices. If we let $A=2 I$, then $A^{-1}=\frac{1}{2} I$ so that the trace of A is $2 n$ but the trace of A^{-1} is $\frac{1}{2} n$. This give the desired example because $2 n>\frac{1}{2} n$ for all positive integers n.■
(b) We have $\operatorname{det}(-A)=(-1)^{6} \operatorname{det} A$, where the right hand side is equal to $\operatorname{det} A$ because $(-1)^{6}=1$. Therefore we have $\operatorname{det}(-A)=\operatorname{det} A>0 . ■$
4. [25 points] Find the determinant of the following 4×4 matrix:

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 7 & 1 & 0 \\
0 & 6 & 5 & 1 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

SOLUTION

Here is one quick way of carrying out the computation: First subtract multiples of the first row from the remaining rows; more precisely, subtract 7, 6 and 3 times this row from the second, third and fourth rows respectively. Then all the entries of the second column are zero except for $a_{1,2}=1$:

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 5 & 1 \\
4 & 0 & 2 & 1
\end{array}\right)
$$

These operations leave the determinant unchanged, so the new matrix has the same determinant as the old one. Now subtract 5 and 2 times the second row from the third and fourth rows respectively. This yields the following matrix whose determinant is the same as that of the original matrix:

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & 0 & 1
\end{array}\right)
$$

Now cyclically permute the matrix via the permutation (1234). The effect of this is to multiply the matrix by the sign of (1234), which is -1 , and here is the new matrix:

$$
\left(\begin{array}{llll}
4 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

One can now use the formula for the determinant of a triangular matrix to see that the determinant of the last matrix is 4 . Now the net effect of the previous row operations was to multiply the determinant by (-1), so the determinant of the original matrix is $4 /(-1)=-4$.

