MORE EXERCISES FOR CHAPTER 5

Definition. Let V be an vector space over some scalars which will not be specified, and let $T: V \to V$ be a linear transformation. A vector subspace $W \subset V$ is said to be T-invariant if $T[W] \subset W$; in other words, if $w \in W$ then $T(w) \in W$.

1. Let $T: V \to V$ be a linear transformation, and let W_1 and W_2 be T-invariant subspaces of V. Prove that $W_1 + W_2$ is also a T-invariant subspace.

2. Suppose that dim V = n and $S : V \to V$ and $T : V \to V$ are diagonalizable linear transformations (bases of eigenvectors) so that ST = TS. Prove that there is a basis of V whose elements are eigenvectors for both S and T. [*Hint:* If v is an eigenvector for T with eigenvalue c, why is the same true for S(v)?]

3. Find a basis of eigenvectors for the following matrix:

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}$$

4. Let dim V = n, assume that the scalars are the complex numbers, and let $T : V \to V$ be a linear transformation. Prove that there is a basis (more precisely, an ordered basis) y_1, \dots, y_n such that for each j we have

$$T(y_j) == \sum_i b_{i,j} y_i$$

where the matrix $(b_{i,j})$ is **lower** triangular $(b_{i,j} = 0 \text{ if } i < j)$. [*Hint:* One approach is to extract this result from the result stating that there is an ordered basis x_1, \dots, x_n such that the matrix of T with respect to the latter is upper triangular. We can then choose the new basis to be a reordering of x_1, \dots, x_n .]