## MORE EXERCISES FOR CHAPTER 5

Definition. Let $V$ be an vector space over some scalars which will not be specified, and let $T: V \rightarrow V$ be a linear transformation. A vector subspace $W \subset V$ is said to be $T$-invariant if $T[W] \subset W$; in other words, if $w \in W$ then $T(w) \in W$.

1. Let $T: V \rightarrow V$ be a linear transformation, and let $W_{1}$ and $W_{2}$ be $T$-invariant subspaces of $V$. Prove that $W_{1}+W_{2}$ is also a $T$-invariant subspace.
2. Suppose that $\operatorname{dim} V=n$ and $S: V \rightarrow V$ and $T: V \rightarrow V$ are diagonalizable linear transformations (bases of eigenvectors) so that $S T=T S$. Prove that there is a basis of $V$ whose elements are eigenvectors for both $S$ and $T$. [Hint: If $v$ is an eigenvector for $T$ with eigenvalue $c$, why is the same true for $S(v)$ ?]
3. Find a basis of eigenvectors for the following matrix:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & 3
\end{array}\right)
$$

4. Let $\operatorname{dim} V=n$, assume that the scalars are the complex numbers, and let $T: V \rightarrow V$ be a linear transformation. Prove that there is a basis (more precisely, an ordered basis) $y_{1}, \cdots, y_{n}$ such that for each $j$ we have

$$
T\left(y_{j}\right)==\sum_{i} b_{i, j} y_{i}
$$

where the matrix $\left(b_{i, j}\right)$ is lower triangular $\left(b_{i, j}=0\right.$ if $\left.i<j\right)$. [Hint: One approach is to extract this result from the result stating that there is an ordered basis $x_{1}, \cdots, x_{n}$ such that the matrix of $T$ with respect to the latter is upper triangular. We can then choose the new basis to be a reordering of $x_{1}, \cdots, x_{n}$.]

