MORE EXERCISES FOR CHAPTER 6

1. Let V be the space of real 2×1 matrices with the analog of the usual inner product on \mathbb{R}^{n} (sum of the products of the corresponding coordinates), and define $\varphi: V \times V \rightarrow \mathbb{R}$ by the formula

$$
\varphi(X, Y)=X^{*} A Y
$$

where X^{*} denotes the transpose of X and A is the following 2×2 matrix:

$$
\left(\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right)
$$

Prove that φ defines an inner product. [Hints: Show that A has an orthogonal basis of eigenvectors $\left\{w_{1}, w_{2}\right\}$ with eigenvalues 8 and 2. Find explicit eigenvectors. Express X as a linear combination $\xi_{1} w_{1}+\xi_{2} w_{2}$ for suitable scalars ξ_{j} and verify that $X^{*} A X=8 \xi_{1}^{2}+2 \xi_{j}^{2}$; the scalars ξ_{j} should be given explicitly in terms of the entries for X. The other properties of an inner product follow from corresponding identities for matrix multiplication and the fact that A is its own transpose.]
2. Suppose that φ_{0} and φ_{1} are inner products on some real or complex vector space V, and assume that $0<t<1$. Prove that for each such t the function

$$
\varphi_{t}(x, y)=t \varphi_{0}(x, y)+(1-t) \varphi_{1}(x, y)
$$

defines an inner product on V.
3. Let V and W be real or complex inner product spaces with orthonormal bases $\left\{a_{1}, \cdots, a_{n}\right\}$ and $\left\{b_{1}, \cdots, b_{m}\right\}$ respectively, and let $T: V \rightarrow W$ be a linear transformation whose effect on basis vectors is given by $T\left(a_{j}\right)=\sum_{i} p_{i, j} b_{i}$. Prove that $p_{i, j}=\left\langle T\left(a_{j}\right), b_{i}\right\rangle$ for all i and j.
4. Find the distance from the vector $(2,3,4,5) \in \mathbb{R}^{4}$ to the hyperplane (3-dimensional subspace through the origin) with defining equation $x_{1}+x_{2}+x_{3}+x_{4}=0$. [Hints: First find a basis for the subspace using row operations on matrices, then find an orthonormal basis by the Gram-Schmidt process.]
5. Let $W \subset \mathbb{C}^{3}$ be the subspace with basis $(1,0, i)$ and $(1,2,1)$. Find a basis for W^{\perp}.
6. Let V be an inner product space over the real or complex numbers, let W be a finitedimensional subspace of V, and let x be a vector in V such that $x \notin W$. Prove that there is some $y \in W^{\perp}$ such that $\langle x, y\rangle \neq 0$.

