## EXERCISES FOR CHAPTER 7

## 7A. Linear transformations and inner products

Exercises in Axler: 1,3, 4, 7, 12
Additional exercises:
X1. Let $V$ be a finite dimensional inner product sign over the real or complex numbers, and let $T: V \rightarrow V$ be a linear transformation. Prove that $T$ has a decomposition as a sum $S_{1}+S_{2}$ where $S_{1}$ is self adjoint and $S_{2}$ is skew adjoint (i.e., $S_{2}^{*}=-S_{2}$ ). [Hint: Consider $\frac{1}{2}\left(S_{1}+S_{1}^{*}\right)$.]
X2. Find the eigenvalues and eigenvectors of the following symmetric matrices:

$$
\left(\begin{array}{cc}
0 & -2 \\
-2 & 3
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

X3. Suppose that $A$ is a square matrix over the real numbers such that $A$ is skew symmetric. If $i$ is a square root of -1 , explain why the complex matrix $i A$ is Hermitian.

## 7B. The Spectral Theorem

Exercises in Axler: 2, 3, 6, 15
Additional exercises:
X1. Show that the matrix

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

is orthogonal and has two real eigenvalues. What are the corresponding eigenvectors?
X2. Show that the matrix

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

is orthogonal and has two nonreal eigenvalues provided $\theta$ is not an integral multiple of $\pi$ (with angle measures expressed in radians). What are the corresponding eigenvectors?

## 7C. Positive operators

Exercises in Axler: 1, 2, 5, 6, 9
Additional exercises:
X1. Determine whether the following matrices are positive definite:

$$
\left(\begin{array}{cc}
5 & -2 \\
-2 & 2
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

X2. Let $A$ be a real symmetric matrix. Prove that there is some real number $c>0$ such that $A+c I$ is positive definite.
X3. (a) Define a relation $\leq$ on symmetric $n \times n$ matrices such that $A \geq B$ if and only if $A-B$ is positive semidefinite, and prove that this relation defines a partial ordering on the set of all such matrices. (In other words, $A \geq A, A \geq B$ and $B \geq A$ imply $A=B, A \geq B B \geq C$ imply $A \geq C$.)
(b) Construct a symmetric $2 \times 2$ matrix $A$ such that neither $A \geq 0$ nor $0 \geq A$ is true.

