EXERCISES FOR CHAPTER 7

7A. Linear transformations and inner products

Exercises in Axler: 1,3, 4, 7, 12

Additional exercises:

X1. Let V be a finite dimensional inner product sign over the real or complex numbers, and let $T: V \to V$ be a linear transformation. Prove that T has a decomposition as a sum $S_1 + S_2$ where S_1 is self adjoint and S_2 is skew adjoint (*i.e.*, $S_2^* = -S_2$). [*Hint:* Consider $\frac{1}{2}(S_1 + S_1^*)$.]

X2. Find the eigenvalues and eigenvectors of the following symmetric matrices:

$$\begin{pmatrix} 0 & -2 \\ -2 & 3 \end{pmatrix} \qquad \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

X3. Suppose that A is a square matrix over the real numbers such that A is skew symmetric. If i is a square root of -1, explain why the complex matrix iA is Hermitian.

7B. The Spectral Theorem

Exercises in Axler: 2, 3, 6, 15

Additional exercises:

X1. Show that the matrix

$$\begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix}$$

is orthogonal and has two real eigenvalues. What are the corresponding eigenvectors?

X2. Show that the matrix

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

is orthogonal and has two nonreal eigenvalues provided θ is not an integral multiple of π (with angle measures expressed in radians). What are the corresponding eigenvectors?

7C. Positive operators

Exercises in Axler: 1, 2, 5, 6, 9

Additional exercises:

X1. Determine whether the following matrices are positive definite:

$$\begin{pmatrix} 5 & -2 \\ -2 & 2 \end{pmatrix} \qquad \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

X2. Let A be a real symmetric matrix. Prove that there is some real number c > 0 such that A + cI is positive definite.

X3. (a) Define a relation \leq on symmetric $n \times n$ matrices such that $A \geq B$ if and only if A - B is positive semidefinite, and prove that this relation defines a partial ordering on the set of all such matrices. (In other words, $A \geq A$, $A \geq B$ and $B \geq A$ imply A = B, $A \geq B$ $B \geq C$ imply $A \geq C$.)

(b) Construct a symmetric 2×2 matrix A such that neither $A \ge 0$ nor $0 \ge A$ is true.