MORE EXERCISES FOR SECTION 7A

1. Let V and W be inner product spaces over the real or complex numbers, and suppose that $T: V \rightarrow W$ be a linear transformation with adjoint T^{*}. Prove that $T^{*} T$ and $T T^{*}$ are positive semidefinite, and show that the ranks of both are equal to the rank of T.
2. Let S and T be self adjoint linear transformations on the inner product space V. Prove that $S T$ is self adjoint if and only if $S T=T S$.

EXAMPLE. Let f be the real valued function on the real line defined by $f(x)=\exp \left(-1 / x^{2}\right)$ if $x>0$ and $f(0)=0$ if $x \leq 0$. Then clearly f is infinitely differentiable for $x \neq 0$, and repeated applications of L'Hospital's Rule imply that the $n^{\text {th }}$ derivative $f^{(n)}(0)$ is 0 for all n (you need not verify this). If we then define $b(x)=f(x) \cdot f(1-x)$ (i.e., a "bump function") it follows that b is infinitely differentiable with $b(x)=0$ if $x \notin[0,1]$, but $b(x)>0$ on the open interval $(0,1)$. Using changes of variables and linear combinations, one can use this example to construct many other functions in V.
3. Let V be the vector space of all real valued functions on $[0,1]$ which are infinitely differentiable and satisfy $f^{(n)}(0)=f^{(n)}(1)=0$, and define an inner product by the formula

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

The previous discussion implies that V is a nontrivial vector space (in fact, it is infinite dimensional). Explain why differentiation induces a linear transformation D from V to itself, and find the adjoint of D. [Hint: Integration by parts.]

