STILL MORE EXERCISES FOR CHAPTER 7

1. Let V be a real inner product space, let $u \in V$ be a unit vector (|u| = 1), and let $S : V \to V$ be the linear transformation

$$S(v) = v - 2\langle v, u \rangle u .$$

Prove that S is orthogonal and in fact $S^2 = I$. Furthermore, show that the eigenspace of -1 is spanned by u.

2. Give an example of a linear transformation (or square matrix) A such that A^2 is normal but A is not normal.

3. Prove that a self adjoint linear transformation T on a finite dimensional real inner product space V is positive semidefinite if and only if $A = B^*B$ for some $B: V \to V$.

4. Suppose that A is a symmetric square matrix over the reals. Prove that there is a real symmetric matrix B so that $B^3 = A$. [*Hint:* Look at the induced self adjoint linear transformation.]

5. Let T and S be self adjoint positive definite linear transformations on the inner product space V. Prove the following:

- (a) S + T is positive definite.
- (b) If c is a positive real number then cT is positive definite.
- (c) T^{-1} is positive definite.
- (d) If $U: V \to V$ is self adjoint then there is some real number a > 0 such that U + aI is positive definite.

6. Let V be a finite dimensional complex inner product space, and let $T: V \to V$ be self adjoint. Prove the following:

- (a) |v + iTv| = |v iTv| for all $v \in V$.
- (b) The linear transformations $I \pm iT$ are invertible.
- (c) The Cayley transform

$$U = (I - iT)^{\circ}(I + iT)^{-1}$$

is unitary.