STILL MORE EXERCISES FOR CHAPTER 7

1. Let V be a real inner product space, let $u \in V$ be a unit vector $(|u|=1)$, and let $S: V \rightarrow V$ be the linear transformation

$$
S(v)=v-2\langle v, u\rangle u
$$

Prove that S is orthogonal and in fact $S^{2}=I$. Furthermore, show that the eigenspace of -1 is spanned by u.
2. Give an example of a linear transformation (or square matrix) A such that A^{2} is normal but A is not normal.
3. Prove that a self adjoint linear transformation T on a finite dimensional real inner product space V is positive semidefinite if and only if $A=B^{*} B$ for some $B: V \rightarrow V$.
4. Suppose that A is a symmetric square matrix over the reals. Prove that there is a real symmetric matrix B so that $B^{3}=A$. [Hint: Look at the induced self adjoint linear transformation.]
5. Let T and S be self adjoint positive definite linear transformations on the inner product space V. Prove the following:
(a) $S+T$ is positive definite.
(b) If c is a positive real number then $c T$ is positive definite.
(c) T^{-1} is positive definite.
(d) If $U: V \rightarrow V$ is self adjoint then there is some real number $a>0$ such that $U+a I$ is positive definite.
6. Let V be a finite dimensional complex inner product space, and let $T: V \rightarrow V$ be self adjoint. Prove the following:
(a) $|v+i T v|=|v-i T v|$ for all $v \in V$.
(b) The linear transformations $I \pm i T$ are invertible.
(c) The Cayley transform

$$
U=(I-i T)^{\circ}(I+i T)^{-1}
$$

is unitary.

