EXERCISES FOR CHAPTER 8

8A. Primary decomposition

Exercises in Axler: 1,5, 8, 9, 13
Additional exercises:
X1. Let A be a strictly upper triangular 3×3 matrix of the form

$$
\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)
$$

where $a b c \neq 0$ (hence all three entries are nonzero). General considerations imply that $A^{3}=0$. Is it possible that $A^{2}=0$? Either prove that it is never zero or else give a counterexample.

X2. Find the nonzero subspaces V_{λ} for the following matrix, and find the eigenvectors associated to each of the eigenvalues:

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

8B. Rational decomposition of nilpotent transformations

Exercises in Axler: 1, 3, 6, 9, 11
Additional exercises:
X1. An $n \times n$ matrix A is said to be a Heisenberg matrix if it is upper triangular, its diagonal entries are all equal to 1 , and the only nonzero entries off the diagonal appear in the first row and last column.
(a) Translate the preceding description of such matrices into algebraic conditions on the entries $a_{i, j}$ of the matrix A.
(b) Show that 1 is the only eigenvalue of a Heisenberg matrix, and give examples of 5×5 Heisenberg matrices where the space of eigenvectors is k-dimensional, where $k=n-1$ or $n-2$.
(c) Explain why $(A-I)^{3}=0$ if A is a Heisenberg matrix.

X2. Suppose that N is a stricly upper triangular $n \times n$ matrix. Prove that $I+N$ is invertible and its inverse is given by $I+N+N^{2}+\cdots+N^{n-1}$.

8C-8D. Jordan Canonical Form

Exercises in Axler, Section 8C: 1, 5, 6, 7, 11

Exercises in Axler, Section 8D: 4, 5 assuming that $V=V_{\lambda}$ for the eigenvalue λ and that the matrix for $T: V \rightarrow V$ is an elementary Jordan matrix.

Additional exercises:
X1. Let V be a finite dimensional complex vector space, let $T: V \rightarrow V$ be a (complex-) linear transformation, and assume that $V=V_{\lambda}$ for some λ. Determine the number of inequivalent Jordan form possibilities for T if $\operatorname{dim} V=5$.

X2. Determine the number of inequivalent possibilities for the Jordan form of a matrix whose eigenvalues are 2 and 3 .

X3. Suppose that A is an $n \times n$ unitriangular matrix (upper triangular, with all diagonal entries equal to 1), and write $A=I+N$ where N is strictly upper triangular. Compute $A^{4}=(I+N)^{4}$ if A is an elementary 5×5 Jordan matrix.

Warning

If A and B are $n \times n$ matrices, then the usual Binomial Formula for $(A+B)^{k}$ can only be used when A and B commute (i.e., $A B=B A$).

