MORE EXERCISES FOR CHAPTER 8

1. Let V be a finite dimensional vector space, and let $T: V \to V$ be a linear transformation. By the lectures we know that there are nonconstant polynomials f(t) such that f(T) is the zero linear transformation on V.

Let $p(t) = \sum a_k t^k$ be a polynomial of least degree m such that p(T) = 0, so that $a_m \neq 0$, and assume that the constant term a_0 is also nonzero. Prove that T is invertible and in fact T^{-1} is a polynomial in T. [*Hint:* Look at $S = \sum_{1}^{m} a_0^{-1} a_k T^{k-1}$ and find ST.]

2. Let V be a finite dimensional vector space, and let $T: V \to V$ be a diagonalizable linear transformation. Prove that there is a vector x such that the vectors T^k span V if and only if the eigenvalues are distinct.

3. Let *P* be the following matrix:

$$\begin{pmatrix} 0 & 0 & -a \\ 1 & 0 & -b \\ 0 & 1 & -c \end{pmatrix}$$

Verify that $aI + bP + cP^2 + P^3 = 0$. [*Hint:* This can be done without computing the powers of P explicitly. If \mathbf{e}_1 is the first standard unit vector, why are the vectors $P^j \mathbf{e}_1$ (where $0 \le j \le 2$) a basis? Why does \mathbf{e}_1 lie in the kernel of $aI + bP + cP^2 + P^3$, and why does this imply a similar conclusion for \mathbf{e}_2 and \mathbf{e}_3 ?]