MORE EXERCISES FOR CHAPTER 8

1. Let V be a finite dimensional vector space, and let $T: V \rightarrow V$ be a linear transformation. By the lectures we know that there are nonconstant polynomials $f(t)$ such that $f(T)$ is the zero linear transformation on V.

Let $p(t)=\sum a_{k} t^{k}$ be a polynomial of least degree m such that $p(T)=0$, so that $a_{m} \neq 0$, and assume that the constant term a_{0} is also nonzero. Prove that T is invertible and in fact T^{-1} is a polynomial in T. [Hint: Look at $S=\sum_{1}^{m} a_{0}^{-1} a_{k} T^{k-1}$ and find $S T$.]
2. Let V be a finite dimensional vector space, and let $T: V \rightarrow V$ be a diagonalizable linear transformation. Prove that there is a vector x such that the vectors T^{k} span V if and only if the eigenvalues are distinct.
3. Let P be the following matrix:

$$
\left(\begin{array}{ccc}
0 & 0 & -a \\
1 & 0 & -b \\
0 & 1 & -c
\end{array}\right)
$$

Verify that $a I+b P+c P^{2}+P^{3}=0$. [Hint: This can be done without computing the powers of P explicitly. If \mathbf{e}_{1} is the first standard unit vector, why are the vectors $P^{j} \mathbf{e}_{1}$ (where $0 \leq j \leq 2$) a basis? Why does \mathbf{e}_{1} lie in the kernel of $a I+b P+c P^{2}+P^{3}$, and why does this imply a similar conclusion for \mathbf{e}_{2} and \mathbf{e}_{3} ?]

