MORE EXERCISES FOR CHAPTER 10

1. Let V be a finite dimensional vector space. A linear transformation $T: V \rightarrow V$ is said to be an involution if T^{2} is the identity. Since we are working with real or complex scalars, we know that $1 \neq-1$.
(a) Denote the images of $I \pm T$ by V_{+}and V_{-}respectively. Show that V is a direct sum of V_{+} and V_{-}, and that $T x= \pm x$ if $x \in V_{ \pm}$. [Hint: Consider the vectors $x_{ \pm}=\frac{1}{2}(x \pm T x)$.]
(b) Express the trace of T in terms of the dimensions of V and V_{+}.
2. Suppose that A is a 2×2 matrix which does not have a basis of eigenvectors over the real or complex numbers. Find a nontrivial second degree equation relating the trace and determinant of A.
3. Prove that the determinant of the 3×3 Vandermonde matrix, which is named after Alexandre-Théophile Vandermonde (1735-1796):

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right)
$$

is equal to $(b-a)(c-a)(c-b)$.
NOTE. See http://math.uga.edu/ ~pete/Skoufranis12.pdf for generalizations of the Vandermonde matrix and determinant formula to higher dimensions.
4. Recall the standard formula for the cross product of two vectors $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=$ $\left(b_{1}, b_{2}, b_{3}\right)$ in \mathbb{R}^{3} :

$$
a \times b=\left(\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|,\left|\begin{array}{cc}
a_{3} & a_{1} \\
b_{3} & b_{1}
\end{array}\right|,\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|\right)
$$

(a) Verify the "BAC-CAB" rule for threefold cross products:

$$
A \times(B \times C)=B(A \cdot C)-C(A \cdot B)
$$

Here the scalar multiplication is written on the right as aid to memorizing the formula.
(b) Verify that the cross product satisfies the Jacobi identity:

$$
a \times(b \times c)+b \times(c \times a)+c \times(a \times b)=0
$$

