
JUSTIFICATIONS FOR THE GRAM-SCHMIDT PROCESS

The purpose of this file is to verify the assertions needed to show that the Gram-Schmidt
Process described in gram-schmidt.pdf has all the required properties. Specifically, given a basis
v1, · · · , vn for a finite-dimensional inner product space V , there is a basis w1, · · · , wn such that
the following hold:

(1) For all j between 1 and n, the vectors v1, · · · , vj and w1, · · · , wj span the same subspace
of V .

(2) For all j between 1 and n, the vectors w1, · · · , wj form an orthogonal set.

These properties are formulated so that one can construct the vectors wj by induction, starting
with w1 = v1. If j − 1 ≤ 1 and w1, · · · , wj−1 has the required properties, we define a candidate
for wj by the following formula:

wj = vj −
∑

k<j

〈vj , wk〉

〈wk, wk〉
wk

Geometrically, the sum is supposed to represent the perpendicular projection of vj onto the sub-
space Wj−1 spanned by v1, · · · , vj−1 and w1, · · · , wj−1, and this will be considered further in
math132notes6C.pdf, but for now we shall concentrate on the algebraic formula. Completion of
the inductive step requires us to verify that the two properties stated above are true for the vectors
w1, · · · , wj .

One place to start is by checking that wj is nonzero. But if it is zero, then vj will be a
linear combination of w1, · · · , wj−1 and hence by the inductive hypothesis it will also be a linear
combination of v1, · · · , vj−1. This does not happen because the vectors v1, · · · , vj are a (subset
of a) linearly independent set. Note further that by the formula and the inductive hypothesis, the
vector wj is a linear combination of v1, · · · , vj , so that SPAN(w1, · · · , wj) ⊂ SPAN(v1, · · · , vj).

To prove the reverse inclusion, use the induction hypothesis that SPAN(w1, · · · , wj−1) =
SPAN(v1, · · · , vj−1) and the identity

vj = wj +
∑

k<j

〈vj , wk〉

〈wk, wk〉
wk

to see that SPAN(v1, · · · , vj) ⊂ SPAN(w1, · · · , wj). This completes the verification of property
(1).

We now turn to the second property. By induction we know that the vectors w1, · · · , wj−1

are pairwise orthogonal, so to complete the inductive step it is only necessary to show that if m < j

then 〈wj , wm〉 = 0. By the definition of wj , the inner product 〈wj , wm〉 is equal to

〈vj −
∑

k<j

〈vj , wk〉

〈wk, wk〉
wk, wm 〉

which we can rewrite as follows:

〈vj , wm〉 −
∑

k<j

〈vj , wk〉

〈wk, wk〉
〈wk, wm〉
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Observe that most of the terms in the summation will vanish because 〈wk, wm〉 = 0 when k 6= m.
This means that at most one term in the summation is nonzero and we can simplify the displayed
expression to another one with only two terms:

〈wj , wm〉 = 〈vj , wm〉 −
〈vj , wm〉

〈wm, wm〉
〈wm, wm〉

The terms 〈wm, wm〉 in the numerator and denominator cancel each other out, and this leaves us
with 〈vj , wm〉 − 〈vj , wm〉 = 0, proving that wj is orthogonal to w1, · · · , wj−1.

Postscript. Very often one sees a stronger conclusion that there is an orthonormal basis of V with
the given properties (i.e., the basis elements also have unit length). The existence of such a basis
is an immediate consequence of our construction; it is only necessary to take each of the vectors
wj and divide by their respective lengths. One advantage of doing things as in gram-schmidt.pdf

is that if we start with a subspace W of R
n and a basis for W such that the coordinates of each

basis element are rational, then the orthogonal basis we obtain will also have rational coordinates.
This makes computations much easier and less susceptible to errors.
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